Abstract
The morphology of the marine cyanobacterium DC-2 and two light-harvesting complexes from it have been characterized. DC-2 has an outer cell wall sheath not previously observed, the purified phycoerythrin shows many unusual properties that distinguish it from all phycoerythrins characterized to date, and isolated phycobilisomes have a single absorption band at 640 nm in the phycocyanin-allophycocyanin region of the spectrum. On the basis of these observations we suggest that DC-2, rather than being a member of the Synechococcus group, should be placed in its own taxonomic group. In addition, the particular properties of the isolated phycoerythrin suggest that it may be representative of an early stage in the evolution of the phycoerythrins. These observations are of special interest in light of the contribution DC-2 and related cyanobacteria may make to global primary productivity.
Keywords: phycoerythrin, phycobilisomes, cell wall, photosynthesis, prokaryotic evolution
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blauer G., Wagnière G. Conformation of bilirubin and biliverdin in their complexes with serum albumin. J Am Chem Soc. 1975 Apr 2;97(7):1949–1954. doi: 10.1021/ja00840a057. [DOI] [PubMed] [Google Scholar]
- Gantt E., Conti S. F. Ultrastructure of blue-green algae. J Bacteriol. 1969 Mar;97(3):1486–1493. doi: 10.1128/jb.97.3.1486-1493.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gantt E., Lipschultz C. A., Grabowski J., Zimmerman B. K. Phycobilisomes from blue-green and red algae: isolation criteria and dissociation characteristics. Plant Physiol. 1979 Apr;63(4):615–620. doi: 10.1104/pp.63.4.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glazer A. N., Apell G. S., Hixson C. S., Bryant D. A., Rimon S., Brown D. M. Biliproteins of cyanobacteria and Rhodophyta: Homologous family of photosynthetic accessory pigments. Proc Natl Acad Sci U S A. 1976 Feb;73(2):428–431. doi: 10.1073/pnas.73.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glazer A. N., Hixson C. S. Subunit structure and chromophore composition of rhodophytan phycoerythrins. Porphyridium cruentum B-phycoerythrin and b-phycoerythrin. J Biol Chem. 1977 Jan 10;252(1):32–42. [PubMed] [Google Scholar]
- Glazer A. N. Structure and molecular organization of the photosynthetic accessory pigments of cyanobacteria and red algae. Mol Cell Biochem. 1977 Dec 29;18(2-3):125–140. doi: 10.1007/BF00280278. [DOI] [PubMed] [Google Scholar]
- Lauritis J. A., Vigil E. L., Sherman L., Swift H. Photosynthetically-linked oxidation of diaminobenzidine in Blue-green algae. J Ultrastruct Res. 1975 Dec;53(3):331–344. doi: 10.1016/s0022-5320(75)80034-7. [DOI] [PubMed] [Google Scholar]
- Leak L. V. Fine structure of the mucilaginous sheath of Anabaena sp. J Ultrastruct Res. 1967 Nov;21(1):61–74. doi: 10.1016/s0022-5320(67)80006-6. [DOI] [PubMed] [Google Scholar]
- Macdowall F. D., Bednar T., Rosenberg A. Conformation dependence of intramolecular energy transfer in phycoerythrin. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1356–1363. doi: 10.1073/pnas.59.4.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mörschel E., Wehrmeyer W. Multiple forms of phycoerythrin-545 from Cryptomonas maculata. Arch Microbiol. 1977 May 13;113(1-2):83–89. doi: 10.1007/BF00428585. [DOI] [PubMed] [Google Scholar]
- Pecci J., Fujimori E. Mercurial-induced circular dichroism changes of phycoerythrin and phycocyanin. Biochim Biophys Acta. 1969;188(2):230–236. doi: 10.1016/0005-2795(69)90070-1. [DOI] [PubMed] [Google Scholar]