Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Nov;78(11):6963–6966. doi: 10.1073/pnas.78.11.6963

Murine bone marrow cell line producing colony-stimulating factor.

K Harigaya, E P Cronkite, M E Miller, R K Shadduck
PMCID: PMC349173  PMID: 6975942

Abstract

A cell line (H-1) derived from the adherent layer of a 14-wk-old Dexter bone marrow culture has been maintained as cloned and uncloned lines through 21 passages at the time of these studies. These cell lines develop many fat droplets as they age and become confluent. The uncloned line produces increasing amounts of colony-stimulating activity as the cells become confluent. Feeder layers or supernatants from the nonconfluent or confluent fat-laden cells stimulate the formation of greater numbers of colonies derived from cultures of colony-forming units (CFU) than does medium from L cell culture containing colony-stimulating factor (CSF). Antibody to the CSF-containing medium from L cell culture neutralizes the colony-stimulating activity, thus showing immunologic similarity to a known molecular species that stimulates colony production in a CFU culture that produces granulocyte or macrophage populations, or both.

Full text

PDF
6963

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen T. D., Dexter T. M. Cellular interrelationships during in vitro granulopoiesis. Differentiation. 1976 Oct 7;6(3):191–194. doi: 10.1111/j.1432-0436.1976.tb01486.x. [DOI] [PubMed] [Google Scholar]
  2. Bentley S. A., Foidart J. M. Some properties of marrow derived adherent cells in tissue culture. Blood. 1980 Dec;56(6):1006–1012. [PubMed] [Google Scholar]
  3. Dexter T. M., Allen T. D., Lajtha L. G. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol. 1977 Jun;91(3):335–344. doi: 10.1002/jcp.1040910303. [DOI] [PubMed] [Google Scholar]
  4. Dexter T. M., Shadduck R. K. The regulation of haemopoiesis in long-term bone marrow cultures: I. role of L-cell CSF. J Cell Physiol. 1980 Mar;102(3):279–286. doi: 10.1002/jcp.1041020302. [DOI] [PubMed] [Google Scholar]
  5. Gordon M. Y., King J. A., Gordon-Smith E. C. Bone marrow fibroblasts, fat cells and colony-stimulating activity. Br J Haematol. 1980 Sep;46(1):151–152. doi: 10.1111/j.1365-2141.1980.tb05948.x. [DOI] [PubMed] [Google Scholar]
  6. Greenberger J. S. Sensitivity of corticosteroid-dependent insulin-resistant lipogenesis in marrow preadipocytes of obese-diabetic (db/db) mice. Nature. 1978 Oct 26;275(5682):752–754. doi: 10.1038/275752a0. [DOI] [PubMed] [Google Scholar]
  7. Howard M., Burgess A., McPhee D., Metcalf D. T-cell hybridoma secreting hemopoietic regulatory molecules: granulocyte-macrophage and eosinophil colony-stimulating factors. Cell. 1979 Dec;18(4):993–999. doi: 10.1016/0092-8674(79)90211-3. [DOI] [PubMed] [Google Scholar]
  8. Johnson G. R., Metcalf D. Pure and mixed erythroid colony formation in vitro stimulated by spleen conditioned medium with no detectable erythropoietin. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3879–3882. doi: 10.1073/pnas.74.9.3879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pike B. L., Robinson W. A. Human bone marrow colony growth in agar-gel. J Cell Physiol. 1970 Aug;76(1):77–84. doi: 10.1002/jcp.1040760111. [DOI] [PubMed] [Google Scholar]
  10. Williams N., Jackson H., Sheridan A. P., Murphy M. J., Jr, Elste A., Moore M. A. Regulation of megakaryopoiesis in long-term murine bone marrow cultures. Blood. 1978 Feb;51(2):245–255. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES