Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Nov;78(11):7015–7018. doi: 10.1073/pnas.78.11.7015

Regional assignment of genes for human α-globin and phosphoglycollate phosphatase to the short arm of chromosome 16

H Phillip Koeffler *,*,, Robert S Sparkes *,*,, Howard Stang *,*,, T Mohandas *,*,
PMCID: PMC349184  PMID: 6273902

Abstract

The human α-globin and phosphoglycollate phosphatase (EC 3.1.3.18) genes have been regionally localized to the short arm of human chromosome 16 (HC16). This was accomplished by fusing mouse fibroblasts (A9) to human fibroblasts that contain a reciprocal translocation between the long arms of chromosomes 16 and 11. The murine A9 cells are deficient in adenine phosphoribosyltransferase (APRT), an enzyme present on the long arm of HC16 (HC16q). Hybrid cells were grown in selection culture medium that required the cells to retain human APRT. Therefore, the hybrids exhibited stable retention of the entire HC16 or the rearranged chromosome containing HC16q. We isolated five independent primary and secondary hybrid cell lines which retained either HC16 or HC16q at a high frequency. The presence of human α-globin genes in the various clones was established directly by DNA extraction and hybridization to a cDNA probe for human α-globin genes. Autoradiographs showed that hybrid cells containing the long arm, but not the short arm, of HC16 showed only the background mouse bands. Hybrid cells that retained the entire HC16 demonstrated the band(s) containing the human α-globin genes. Hybrid cells that contained HC16 with its α-globin genes were then placed in culture medium that contained diaminopurine, which is lethal for cells containing APRT. These counter-selected hybrid cells had lost HC16 and also lost the human α-globin genes as determined by blot hybridization. The presence of α-globin gene sequences in the hybrid clones was concordant with HC16 only and not with any other human chromosome. These results confirm the assignment of α-globin genes to HC16 and localize the genes to the short arm. We also assign the locus for phosphoglycollate to the short arm of HC16.

Keywords: somatic hybrid, gene mapping

Full text

PDF
7015

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker R. F., Hopkinson D. A. Genetic polymorphism of human phosphoglycolate phosphatase (PGP). Ann Hum Genet. 1978 Oct;42(2):143–151. doi: 10.1111/j.1469-1809.1978.tb00644.x. [DOI] [PubMed] [Google Scholar]
  2. Chasin L. A. Mutations affecting adenine phosphoribosyl transferase activity in Chinese hamster cells. Cell. 1974 May;2(1):37–41. doi: 10.1016/0092-8674(74)90006-3. [DOI] [PubMed] [Google Scholar]
  3. Deisseroth A., Nienhuis A., Turner P., Velez R., Anderson W. F., Ruddle F., Lawrence J., Creagan R., Kucherlapati R. Localization of the human alpha-globin structural gene to chromosome 16 in somatic cell hybrids by molecular hybridization assay. Cell. 1977 Sep;12(1):205–218. doi: 10.1016/0092-8674(77)90198-2. [DOI] [PubMed] [Google Scholar]
  4. Embury S. H., Lebo R. V., Dozy A. M., Kan Y. W. Organization of the alpha-globin genes in the Chinese alpha-thalassemia syndromes. J Clin Invest. 1979 Jun;63(6):1307–1310. doi: 10.1172/JCI109426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ferguson-Smith M. A., Westerveld A. Report of the committee on the genetic constitution of chromosomes 13, 14, 15, 16, 17, 18, 19, 20, 21, and 22. Cytogenet Cell Genet. 1979;25(1-4):59–73. doi: 10.1159/000131400. [DOI] [PubMed] [Google Scholar]
  6. Kahan B., Held K. R., DeMars R. The locus for human adenine phosphoribosyltransferase on chromosome no. 16. Genetics. 1974 Dec;78(4):1143–1156. doi: 10.1093/genetics/78.4.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kao F. T., Jones C., Puck T. T. Genetics of somatic mammalian cells: genetic, immunologic, and biochemical analysis with Chinese hamster cell hybrids containing selected human chromosomes. Proc Natl Acad Sci U S A. 1976 Jan;73(1):193–197. doi: 10.1073/pnas.73.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kucherlapati R. S., Baker R. M., Ruddle F. H. Ouabain as a selective agent in the isolation of somatic cell hybrids. Cytogenet Cell Genet. 1975;14(3-6):362–363. doi: 10.1159/000130384. [DOI] [PubMed] [Google Scholar]
  9. Lauer J., Shen C. K., Maniatis T. The chromosomal arrangement of human alpha-like globin genes: sequence homology and alpha-globin gene deletions. Cell. 1980 May;20(1):119–130. doi: 10.1016/0092-8674(80)90240-8. [DOI] [PubMed] [Google Scholar]
  10. Maniatis T., Jeffrey A., Kleid D. G. Nucleotide sequence of the rightward operator of phage lambda. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1184–1188. doi: 10.1073/pnas.72.3.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McKusick V. A., Ruddle F. H. The status of the gene map of the human chromosomes. Science. 1977 Apr 22;196(4288):390–405. doi: 10.1126/science.850784. [DOI] [PubMed] [Google Scholar]
  12. Mercola K. E., Stang H. D., Browne J., Salser W., Cline M. J. Insertion of a new gene of viral origin into bone marrow cells of mice. Science. 1980 May 30;208(4447):1033–1035. doi: 10.1126/science.6246577. [DOI] [PubMed] [Google Scholar]
  13. Mohandas T., Sparkes R. S., Sparkes M. C., Shulkin J. D. Assignment of the human gene for galactose-1-phosphate uridyltransferase to chromosome 9: studies with Chinese hamster-human somatic cell hybrids. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5628–5631. doi: 10.1073/pnas.74.12.5628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Povey S., Jeremiah S. J., Barker R. F., Hopkinson D. A., Robson E. B., Cook P. J., Solomon E., Bobrow M., Carritt B., Buckton K. E. Assignment of the human locus determining phosphoglycolate phosphatase (PGP) to chromosome 16. Ann Hum Genet. 1980 Jan;43(3):241–248. doi: 10.1111/j.1469-1809.1980.tb01557.x. [DOI] [PubMed] [Google Scholar]
  15. Sparkes R. S., Mohandas T., Sparkes M. C., Passage M. B., Shulkin J. D. Assignment of the human gene for phosphoglycolate phosphatase to chromosome 16. Hum Genet. 1980;54(2):159–161. doi: 10.1007/BF00278965. [DOI] [PubMed] [Google Scholar]
  16. Tischfield J. A., Ruddle F. H. Assignment of the gene for adenine phosphoribosyltransferase to human chromosome 16 by mouse-human somatic cell hybridization. Proc Natl Acad Sci U S A. 1974 Jan;71(1):45–49. doi: 10.1073/pnas.71.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wahl G. M., Stern M., Stark G. R. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3683–3687. doi: 10.1073/pnas.76.8.3683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wilson J. T., Wilson L. B., deRiel J. K., Villa-komaroff L., Efstratiadis A., Forget B. G., Weissman S. M. Insertion of synthetic copies of human globin genes into bacterial plasmids. Nucleic Acids Res. 1978 Feb;5(2):563–581. doi: 10.1093/nar/5.2.563. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES