Abstract
The uptake of acidic amino acids by goldfish photoreceptors was investigated by light microscope autoradiography. Isolated retinas were incubated in media containing micromolar amounts of L-[3H]aspartate, L-[3H]glutamate, and D-[3H]aspartate. We have four major observations. (i) Rods accumulate L-[3H]glutamate with a high-affinity transport system; they exhibit a glutamate-to-aspartate selectivity ratio of 30:1. When incubated in 1-10 microM L-[3H]glutamate, rods label more densely than cones. A unit area of rod membrane transports glutamate 30 times better than a unit area of cone membrane. (ii) Red-sensitive and green-sensitive cones show accumulation of L-[3H]aspartate, D-[3H]aspartate, and L-[3H]glutamate, apparently with high affinity, but with little selectivity. Because rods have poor aspartate uptake, red-sensitive and green-sensitive cones may be preferentially labeled with L-[3H]aspartate or D-[3H]aspartate, (iii) Blue-sensitive cones show no uptake of L-[3H]aspartate, D-[3H]aspartate, or L-[3H]glutamate other than that attributable to low-affinity transport. (iv) Various cell types in the goldfish retina can clearly discriminate between glutamate and aspartate, unlike acidic amino acid transport systems described in mammalian brain.
Full text
PDF![7185](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9414/349221/4b2422aa43ce/pnas00662-0647.png)
![7186](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9414/349221/4359da6fe4b1/pnas00662-0648.png)
![7187](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9414/349221/217929f0e617/pnas00662-0649.png)
![7188](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9414/349221/3af02752c3a5/pnas00662-0650.png)
![7189](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9414/349221/b400bfe5cd84/pnas00662-0651.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balcar V. J., Johnston G. A. The structural specificity of the high affinity uptake of L-glutamate and L-aspartate by rat brain slices. J Neurochem. 1972 Nov;19(11):2657–2666. doi: 10.1111/j.1471-4159.1972.tb01325.x. [DOI] [PubMed] [Google Scholar]
- Cervetto L., MacNichol E. F., Jr Inactivation of horizontal cells in turtle retina by glutamate and aspartate. Science. 1972 Nov 17;178(4062):767–768. doi: 10.1126/science.178.4062.767. [DOI] [PubMed] [Google Scholar]
- Davies L. P., Johnston G. A. Uptake and release of D- and L-aspartate by rat brain slices. J Neurochem. 1976 May;26(5):1007–1014. doi: 10.1111/j.1471-4159.1976.tb06485.x. [DOI] [PubMed] [Google Scholar]
- Dowling J. E., Ripps H. Adaptation in skate photoreceptors. J Gen Physiol. 1972 Dec;60(6):698–719. doi: 10.1085/jgp.60.6.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FURUKAWA T., HANAWA I. Effects of some common cations on electroretinogram of the toad. Jpn J Physiol. 1955 Dec 15;5(4):289–300. doi: 10.2170/jjphysiol.5.289. [DOI] [PubMed] [Google Scholar]
- Ishida A. T., Fain G. L. D-aspartate potentiates the effects of L-glutamate on horizontal cells in goldfish retina. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5890–5894. doi: 10.1073/pnas.78.9.5890. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Logan W. J., Snyder S. H. High affinity uptake systems for glycine, glutamic and aspaspartic acids in synaptosomes of rat central nervous tissues. Brain Res. 1972 Jul 20;42(2):413–431. doi: 10.1016/0006-8993(72)90540-9. [DOI] [PubMed] [Google Scholar]
- Marc R. E., Lam D. M. Glycinergic pathways in the goldfish retina. J Neurosci. 1981 Feb;1(2):152–165. doi: 10.1523/JNEUROSCI.01-02-00152.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marc R. E., Sperling H. G. Color receptor identities of goldfish cones. Science. 1976 Feb 6;191(4226):487–489. doi: 10.1126/science.1246634. [DOI] [PubMed] [Google Scholar]
- Marc R. E., Sperling H. G. The chromatic organization of the goldfish cone mosaic. Vision Res. 1976;16(11):1211–1224. doi: 10.1016/0042-6989(76)90044-4. [DOI] [PubMed] [Google Scholar]
- Marc R. E., Stell W. K., Bok D., Lam D. M. GABA-ergic pathways in the goldfish retina. J Comp Neurol. 1978 Nov 15;182(2):221–244. doi: 10.1002/cne.901820204. [DOI] [PubMed] [Google Scholar]
- Murakami M., Otsu K., Otsuka T. Effects of chemicals on receptors and horizontal cells in the retina. J Physiol. 1972 Dec;227(3):899–913. doi: 10.1113/jphysiol.1972.sp010065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murakami M., Otsuka T., Shimazaki H. Effects of aspartate and glutamate on the bipolar cells in the carp retina. Vision Res. 1975 Mar;15(3):456–458. doi: 10.1016/0042-6989(75)90101-7. [DOI] [PubMed] [Google Scholar]
- Negishi K., Drujan B. D. Effects of some amino acids on horizontal cells in the fish retina. J Neurosci Res. 1979;4(5-6):351–363. doi: 10.1002/jnr.490040504. [DOI] [PubMed] [Google Scholar]
- Stell W. K., Hárosi F. I. Cone structure and visual pigment content in the retina of the goldfish. Vision Res. 1976;16(6):647–657. doi: 10.1016/0042-6989(76)90013-4. [DOI] [PubMed] [Google Scholar]
- Storm-Mathisen J. Glutamic acid and excitatory nerve endings: reduction of glutamic acid uptake after axotomy. Brain Res. 1977 Jan 21;120(2):379–386. doi: 10.1016/0006-8993(77)90918-0. [DOI] [PubMed] [Google Scholar]
- Sugawara K., Negishi K. Effects of some amino acids on the horizontal cell membrane potential in the isolated carp retina. Vision Res. 1973 May;13(5):977–981. doi: 10.1016/0042-6989(73)90076-x. [DOI] [PubMed] [Google Scholar]
- Witkovsky P., Nelson J., Ripps H. Action spectra and adaptation properties of carp photoreceptors. J Gen Physiol. 1973 Apr;61(4):401–423. doi: 10.1085/jgp.61.4.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu S. M., Dowling J. E. L-aspartate: evidence for a role in cone photoreceptor synaptic transmission in the carp retina. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5205–5209. doi: 10.1073/pnas.75.10.5205. [DOI] [PMC free article] [PubMed] [Google Scholar]