Abstract
In normal kidneys the renal medulla very efficiently converts arachidonic acid to prostaglandins. Although the renal cortex has only trace amounts of cyclooxygenase activity, we report here the existence of an active cortical NADPH-dependent monooxygenase that converts arachidonate primarily into 19-hydroxy- and 20-hydroxyarachidonate as well as 19-ketoarachidonate and a dicarboxylic acid. The enzyme is presumably a cytochrome P-450 monooxygenase and demonstrated marked resistance to inhibition by 2-diethylaminoethyl-2,2-diphenylvalerate hydrochloride (SKF-525A), metyrapone, and carbon monoxide. In the rabbit kidney these products are produced only by the cortex in the presence of NADPH and represent the major metabolic products of arachidonate metabolism.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Borgeat P., Hamberg M., Samuelsson B. Transformation of arachidonic acid and homo-gamma-linolenic acid by rabbit polymorphonuclear leukocytes. Monohydroxy acids from novel lipoxygenases. J Biol Chem. 1976 Dec 25;251(24):7816–7820. [PubMed] [Google Scholar]
- Borgeat P., Samuelsson B. Transformation of arachidonic acid by rabbit polymorphonuclear leukocytes. Formation of a novel dihydroxyeicosatetraenoic acid. J Biol Chem. 1979 Apr 25;254(8):2643–2646. [PubMed] [Google Scholar]
- Ellin A., Orrenius S. Fatty acid hydroxylation in rat kidney cortex microsomes. Mol Cell Biochem. 1975 Aug 30;8(2):69–79. doi: 10.1007/BF02116235. [DOI] [PubMed] [Google Scholar]
- Goetzl E. J., Sun F. F. Generation of unique mono-hydroxy-eicosatetraenoic acids from arachidonic acid by human neutrophils. J Exp Med. 1979 Aug 1;150(2):406–411. doi: 10.1084/jem.150.2.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamberg M., Samuelsson B. Detection and isolation of an endoperoxide intermediate in prostaglandin biosynthesis. Proc Natl Acad Sci U S A. 1973 Mar;70(3):899–903. doi: 10.1073/pnas.70.3.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kupfer D., Navarro J., Piccolo D. E. Hydroxylation of prostaglandins A1 and E1 by liver microsomal monooxygenase. Characteristics of the enzyme system in the guinea pig. J Biol Chem. 1978 Apr 25;253(8):2804–2811. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Larsson C., Anggård E. Regional differences in the formation and metabolism of prostaglandins in the rabbit kidney. Eur J Pharmacol. 1973 Jan;21(1):30–36. doi: 10.1016/0014-2999(73)90202-1. [DOI] [PubMed] [Google Scholar]
- Lee J. B., Crowshaw K., Takman B. H., Attrep K. A. The identification of prostaglandins E(2), F(2alpha) and A(2) from rabbit kidney medulla. Biochem J. 1967 Dec;105(3):1251–1260. doi: 10.1042/bj1051251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrison A. R., Nishikawa K., Needleman P. Unmasking of thromboxane A2 synthesis by ureteral obstruction in the rabbit kidney. Nature. 1977 May 19;267(5608):259–260. doi: 10.1038/267259a0. [DOI] [PubMed] [Google Scholar]
- Navarro J., Piccolo D. E., Kupfer D. Hydroxylation of prostaglandin E1 by kidney cortex microsomal monooxygenase in the guinea pig. Arch Biochem Biophys. 1978 Nov;191(1):125–133. doi: 10.1016/0003-9861(78)90074-7. [DOI] [PubMed] [Google Scholar]
- Pace-Asciak C. R., Rangaraj G. Distribution of prostaglandin biosynthetic pathways in several rat tissues. Formation of 6-ketoprostaglandin F1alpha. Biochim Biophys Acta. 1977 Mar 25;486(3):579–582. doi: 10.1016/0005-2760(77)90112-6. [DOI] [PubMed] [Google Scholar]
- Theoharides A. D., Kupfer D. Evidence for different hepatic microsomal monooxygenases catalyzing omega- and (omega-1)-hydroxylations of prostaglandins E1 and E2. Effects of inducers of monooxygenase on the kinetic constants of prostaglandin hydroxylation. J Biol Chem. 1981 Mar 10;256(5):2168–2175. [PubMed] [Google Scholar]