Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Dec;78(12):7408–7411. doi: 10.1073/pnas.78.12.7408

Nucleotide insertion in the anticodon loop of a glycine transfer RNA causes missense suppression.

N E Prather, E J Murgola, B H Mims
PMCID: PMC349276  PMID: 7038678

Abstract

We have determined the nucleotide sequences of two unusual UGG-suppressing glycine tRNAs from Escherichia coli and, as a result, have discovered a new mechanism for the generation of missense suppressors. The suppressor tRNAs translate UGG but not UGA. Each arose as a consequence of spontaneous mutational alteration of glyT, the gene for the GGA/G-reading glycine tRNA of E. coli. In each mutant tRNA, the change in primary structure involved the insertion of an adenylate residue on the 3' side of the anticodon and the loss of a modification of the uridylate residue at the 5' end of the anticodon. A "shift" of the effective anticodon by one nucleotide in the 3' direction can account for the new coding specificity of these tRNAs.

Full text

PDF
7408

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRODY S., YANOFSKY C. Suppressor gene alteration of protein primary structure. Proc Natl Acad Sci U S A. 1963 Jul;50:9–16. doi: 10.1073/pnas.50.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buckingham R. H., Kurland C. G. Codon specificity of UGA suppressor tRNATrp from Escherichia coli. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5496–5498. doi: 10.1073/pnas.74.12.5496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carbon J., Curry J. B. Genetically and chemically derived missense suppressor transfer RNA's with altered enzymic aminoacylation rates. J Mol Biol. 1968 Dec 14;38(2):201–216. doi: 10.1016/0022-2836(68)90406-3. [DOI] [PubMed] [Google Scholar]
  4. Colby D. S., Schedl P., Guthrie C. A functional requirement for modification of the wobble nucleotide in tha anticodon of a T4 suppressor tRNA. Cell. 1976 Nov;9(3):449–463. doi: 10.1016/0092-8674(76)90090-8. [DOI] [PubMed] [Google Scholar]
  5. Feinstein S. I., Altman S. Coding properties of an ochre-suppressing derivative of Escherichia coli tRNAITyr. J Mol Biol. 1977 May 25;112(3):453–470. doi: 10.1016/s0022-2836(77)80192-7. [DOI] [PubMed] [Google Scholar]
  6. Feinstein S. I., Altman S. Context effects on nonsense codon suppression in Escherichia coli. Genetics. 1978 Feb;88(2):201–219. doi: 10.1093/genetics/88.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gupta R. C., Randerath K. Rapid print-readout technique for sequencing of RNA's containing modified nucleotides. Nucleic Acids Res. 1979 Aug 10;6(11):3443–3458. doi: 10.1093/nar/6.11.3443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hirsh D. Tryptophan transfer RNA as the UGA suppressor. J Mol Biol. 1971 Jun 14;58(2):439–458. doi: 10.1016/0022-2836(71)90362-7. [DOI] [PubMed] [Google Scholar]
  9. Kurland C. G., Rigler R., Ehrenberg M., Blomberg C. Allosteric mechanism for codon-dependent tRNA selection on ribosomes. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4248–4251. doi: 10.1073/pnas.72.11.4248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Li M., Tzagoloff A. Assembly of the mitochondrial membrane system: sequences of yeast mitochondrial valine and an unusual threonine tRNA gene. Cell. 1979 Sep;18(1):47–53. doi: 10.1016/0092-8674(79)90352-0. [DOI] [PubMed] [Google Scholar]
  11. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Murgola E. J., Bryant J. E. Glutamic acid codon suppressors derived from a unique species of glycine transfer ribonucleic acid. J Bacteriol. 1980 Apr;142(1):131–137. doi: 10.1128/jb.142.1.131-137.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Murgola E. J., Pagel F. T. Codon recognition by glycine transfer RNAs of Escherichia coli in vivo. J Mol Biol. 1980 Apr 25;138(4):833–844. doi: 10.1016/0022-2836(80)90067-4. [DOI] [PubMed] [Google Scholar]
  14. Murgola E. J. Restricted wobble in UGA codon recognition by glycine tRNA suppressors of UGG. J Mol Biol. 1981 Jun 15;149(1):1–13. doi: 10.1016/0022-2836(81)90257-6. [DOI] [PubMed] [Google Scholar]
  15. Pope W. T., Brown A., Reeves R. H. The identification of the tRNA substrates for the supK tRNA methylase. Nucleic Acids Res. 1978 Mar;5(3):1041–1057. doi: 10.1093/nar/5.3.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reeves R. H., Roth J. R. Transfer ribonucleic acid methylase deficiency found in UGA supressor strains. J Bacteriol. 1975 Oct;124(1):332–340. doi: 10.1128/jb.124.1.332-340.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Riddle D. L., Carbon J. Frameshift suppression: a nucleotide addition in the anticodon of a glycine transfer RNA. Nat New Biol. 1973 Apr 25;242(121):230–234. doi: 10.1038/newbio242230a0. [DOI] [PubMed] [Google Scholar]
  18. Roberts J. W., Carbon J. Nucleotide sequence studies of normal and genetically altered glycine transfer ribonucleic acids from Escherichia coli. J Biol Chem. 1975 Jul 25;250(14):5530–5541. [PubMed] [Google Scholar]
  19. Smith J. D., Celis J. E. Mutant tyrosine transfer RNA that can be charged with glutamine. Nat New Biol. 1973 May 16;243(124):66–71. [PubMed] [Google Scholar]
  20. Vacher J., Buckingham R. H. Effect of photochemical crosslink S4U(8)-C(13) on suppressor activity of su+ tRNATrp from Escherichia coli. J Mol Biol. 1979 Apr 5;129(2):287–294. doi: 10.1016/0022-2836(79)90282-1. [DOI] [PubMed] [Google Scholar]
  21. YANOFSKY C., HELINSKI D. R., MALING B. D. The effects of mutation on the composition and properties of the A protein of Escherichia coli tryptohan synthetase. Cold Spring Harb Symp Quant Biol. 1961;26:11–24. doi: 10.1101/sqb.1961.026.01.006. [DOI] [PubMed] [Google Scholar]
  22. YANOFSKY C., LAWRENCE P. S. Gene action. Annu Rev Microbiol. 1960;14:311–340. doi: 10.1146/annurev.mi.14.100160.001523. [DOI] [PubMed] [Google Scholar]
  23. Yaniv M., Folk W. R., Berg P., Soll L. A single mutational modification of a tryptophan-specific transfer RNA permits aminoacylation by glutamine and translation of the codon UAG. J Mol Biol. 1974 Jun 25;86(2):245–260. doi: 10.1016/0022-2836(74)90016-3. [DOI] [PubMed] [Google Scholar]
  24. Yanofsky C., Ito J., Horn V. Amino acid replacements and the genetic code. Cold Spring Harb Symp Quant Biol. 1966;31:151–162. doi: 10.1101/sqb.1966.031.01.023. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES