Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Dec;78(12):7417–7421. doi: 10.1073/pnas.78.12.7417

Salts promote activation of fat cell adenylate cyclase by GTP: special role for sodium ion.

M S Katz, J S Partilla, M A Piñeyro, C R Schneyer, R I Gregerman
PMCID: PMC349278  PMID: 6278472

Abstract

The effects of GTP on adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] of human and rat fat cell membranes ("ghosts" and purified membranes) were examined in the absence and presence of added inorganic salts. With human ghosts GTP alone (0.1 mM) inhibited enzyme activity by 40% at 30 degrees C and had no significant effect at 37 degrees C. At both temperatures Na+ salts of Cl-, N3-, and SO2-(4) stimulated activity (up to 4-fold basal activity for 200 mM NaN3), with maximal effects at salt concentrations of 100-200 mM. Over the same concentration range these salts also allowed temperature-dependent stimulation by GTP. GTP increased the maximal activity produced by salt alone by about 2-fold at 30 degrees C and about 4-fold at 37 degrees C. Na+ (added as Cl-) was much more effective than other alkali metal cations in promoting activation by GTP. Na+ salts allowed activation of the human enzyme by the GTP analog 5'-guanylyl imidodiphosphate and also promoted stimulation of rat fat cell adenylate cyclase by both nucleotides. In time course studies of human and rat fat cell ghosts, GTP appeared to sustain an initial high rate of salt-stimulated activity, which in the absence of nucleotide subsequently fell to a lower rate, suggesting that salts might activate adenylate cyclase by promoting the stimulatory effect of endogenous membrane-bound GTP. However, with purified human fat cell membranes and a GTP-free system, salts were still stimulatory and promoted activation by added GTP. These results differ from those of previous reports in other systems in which Na+ has promoted only inhibitory effects in GTP regulation of adenylate cyclase.

Full text

PDF
7417

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blume A. J., Lichtshtein D., Boone G. Coupling of opiate receptors to adenylate cyclase: requirement for Na+ and GTP. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5626–5630. doi: 10.1073/pnas.76.11.5626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burns T. W., Langley P. E., Terry B. E., Bylund D. B., Hoffman B. B., Tharp M. D., Lefkowitz R. J., García-Saínz J. A., Fain J. N. Pharmacological characterizations of adrenergic receptors in human adipocytes. J Clin Invest. 1981 Feb;67(2):467–475. doi: 10.1172/JCI110055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cassel D., Selinger Z. Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3307–3311. doi: 10.1073/pnas.74.8.3307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cassel D., Selinger Z. Mechanism of adenylate cyclase activation through the beta-adrenergic receptor: catecholamine-induced displacement of bound GDP by GTP. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4155–4159. doi: 10.1073/pnas.75.9.4155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chegwidden W. R., Watts D. C. Kinetic studies and effects of anions on creatine phosphokinase from skeletal muscle of rhesus monkey (Macaca mulatta). Biochim Biophys Acta. 1975 Nov 20;410(1):99–114. doi: 10.1016/0005-2744(75)90210-7. [DOI] [PubMed] [Google Scholar]
  6. Cooper B., Partilla J. S., Gregerman R. I. Human fat cell adenylate cyclase. Enzyme characterization and guanine nucleotide effects on epinephrine responsiveness in cell membranes. Biochim Biophys Acta. 1976 Aug 12;445(1):246–258. doi: 10.1016/0005-2744(76)90177-7. [DOI] [PubMed] [Google Scholar]
  7. Cooper D. M., Schlegel W., Lin M. C., Rodbell M. The fat cell adenylate cyclase system. Characterization and manipulation of its bimodal regulation by GTP. J Biol Chem. 1979 Sep 25;254(18):8927–8931. [PubMed] [Google Scholar]
  8. Cryer P. E., Jarett L., Kipnis D. M. Nucleotide inhibition of adenyl cyclase activity in fat cell membranes. Biochim Biophys Acta. 1969 May 6;177(3):586–590. doi: 10.1016/0304-4165(69)90323-7. [DOI] [PubMed] [Google Scholar]
  9. Downs R. W., Jr, Spiegel A. M., Singer M., Reen S., Aurbach G. D. Fluoride stimulation of adenylate cyclase is dependent on the guanine nucleotide regulatory protein. J Biol Chem. 1980 Feb 10;255(3):949–954. [PubMed] [Google Scholar]
  10. Ebel R. E., Lardy H. A. Stimulation of rat liver mitochondrial adenosine triphosphatase by anions. J Biol Chem. 1975 Jan 10;250(1):191–196. [PubMed] [Google Scholar]
  11. Ebert R., Schwabe U. Biphasic effect of 5'-guanylylimidodiphosphate on fat cell adenylate cyclase. Naunyn Schmiedebergs Arch Pharmacol. 1974;286(3):297–313. doi: 10.1007/BF00498312. [DOI] [PubMed] [Google Scholar]
  12. Eckstein F., Cassel D., Levkovitz H., Lowe M., Selinger Z. Guanosine 5'-O-(2-thiodiphosphate). An inhibitor of adenylate cyclase stimulation by guanine nucleotides and fluoride ions. J Biol Chem. 1979 Oct 10;254(19):9829–9834. [PubMed] [Google Scholar]
  13. Harwood J. P., Löw H., Rodbell M. Stimulatory and inhibitory effects of guanyl nucleotides on fat cell adenylate cyclase. J Biol Chem. 1973 Sep 10;248(17):6239–6245. [PubMed] [Google Scholar]
  14. Izutsu K. T., Siegel I. A., Brisson D. L. The effect of ionic strength on a Mg2+-ATPase and its relevance to the determination of (Na+ plus K+)-ATPase. Biochim Biophys Acta. 1974 Dec 24;373(3):361–368. doi: 10.1016/0005-2736(74)90016-9. [DOI] [PubMed] [Google Scholar]
  15. Jard S., Cantau B., Jakobs K. H. Angiotensin II and alpha-adrenergic agonists inhibit rat liver adenylate cyclase. J Biol Chem. 1981 Mar 25;256(6):2603–2606. [PubMed] [Google Scholar]
  16. Johnson R. A., Pilkis S. J., Hamet P. Liver membrane adenylate cyclase. Synergistic effects of anions on fluoride, glucagon, and guanyl nucleotide stimulation. J Biol Chem. 1975 Aug 25;250(16):6599–6607. [PubMed] [Google Scholar]
  17. Kalish M. I., Pineyro M. A., Cooper B., Gregerman R. I. Adenylyl cyclase activation by halide anions other than fluoride. Biochem Biophys Res Commun. 1974 Nov 27;61(2):781–787. doi: 10.1016/0006-291x(74)91025-0. [DOI] [PubMed] [Google Scholar]
  18. Kather H., Geiger M. Adrenaline-sensitive adenylate cyclase of human fat cell ghosts: properties and hormone-sensitivity. Eur J Clin Invest. 1977 Oct;7(5):363–371. doi: 10.1111/j.1365-2362.1977.tb01621.x. [DOI] [PubMed] [Google Scholar]
  19. Kather H., Zöllig K., Simon B. Epinephrine-sensitive adenylate cyclase of human fat cell ghosts. Modulation of enzyme activity by GTP. Horm Metab Res. 1978 Jan;10(1):46–49. doi: 10.1055/s-0028-1093479. [DOI] [PubMed] [Google Scholar]
  20. Katz M. S., Kelly T. M., Piñeyro M. A., Gregerman R. I. Anions and cations as stimulators of liver adenylate cyclase. Biochim Biophys Acta. 1980 Sep 17;632(1):11–25. doi: 10.1016/0304-4165(80)90245-7. [DOI] [PubMed] [Google Scholar]
  21. Katz M. S., Partilla J. S., Pineyro M. A., Gregerman R. I. Determinants of the stimulation of fat cell adenylate cyclase by high concentrations of sodium and magnesium salts. Implications for the role of magnesium in regulation of enzyme activity. Biochim Biophys Acta. 1980;613(1):229–237. doi: 10.1016/0005-2744(80)90209-0. [DOI] [PubMed] [Google Scholar]
  22. Katz M. S., Partilla J. S., Piñeyro M. A., Gregerman R. I. Essential role of GTP in epinephrine stimulation of human fat cell adenylate cyclase. J Lipid Res. 1981 Jan;22(1):113–121. [PubMed] [Google Scholar]
  23. Kimura N., Nagata N. The requirement of guanine nucleotides for glucagon stimulation of adenylate cyclase in rat liver plasma membranes. J Biol Chem. 1977 Jun 10;252(11):3829–3835. [PubMed] [Google Scholar]
  24. Londos C., Cooper D. M., Schlegel W., Rodbell M. Adenosine analogs inhibit adipocyte adenylate cyclase by a GTP-dependent process: basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5362–5366. doi: 10.1073/pnas.75.11.5362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Morin L. G. Creatine kinase: re-examination of optimum reaction conditions. Clin Chem. 1977 Sep;23(9):1569–1575. [PubMed] [Google Scholar]
  26. Neer E. J., Salter R. S. Modification of adenylate cyclase structure and function by ammonium sulfate. J Biol Chem. 1981 Jun 10;256(11):5497–5503. [PubMed] [Google Scholar]
  27. Pairault J. Couplage de la corticotropine-beta1-24 avec le système adénylate cyclase des adipocytes de rat. Mise en évidence d'une interaction hormone-nucléotides. Eur J Biochem. 1976 Feb 16;62(2):323–334. doi: 10.1111/j.1432-1033.1976.tb10164.x. [DOI] [PubMed] [Google Scholar]
  28. Poupon R. Activity of human adenylate cyclase from human fat cell membranes. Biomedicine. 1975 Dec 20;23(10):438–442. [PubMed] [Google Scholar]
  29. Rahmanian M., Jarett L. Activation of rat adipocyte plasma membrane adenylate cyclase by sodium azide. Biochem Biophys Res Commun. 1974 Dec 11;61(3):1051–1056. doi: 10.1016/0006-291x(74)90261-7. [DOI] [PubMed] [Google Scholar]
  30. Richards J. M., Swislocki N. I. Activation of adenylate cyclase by molybdate. J Biol Chem. 1979 Aug 10;254(15):6857–6860. [PubMed] [Google Scholar]
  31. Rodbell M., Lin M. C., Salomon Y. Evidence for interdependent action of glucagon and nucleotides on the hepatic adenylate cyclase system. J Biol Chem. 1974 Jan 10;249(1):59–65. [PubMed] [Google Scholar]
  32. Rodbell M. On the mechanism of activation of fat cell adenylate cyclase by guanine nucleotides. An explanation for the biphasic inhibitory and stimulatory effects of the nucleotides and the role of hormones. J Biol Chem. 1975 Aug 10;250(15):5826–5834. [PubMed] [Google Scholar]
  33. Roy C., Le Bars N. C., Jard S. Vasopressin-sensitive kidney adenylate cyclase. Differential effects of monovalent ions on stimulation by fluoride, vasopressin and guanylyl 5'-imidodiphosphate. Eur J Biochem. 1977 Sep;78(2):325–332. doi: 10.1111/j.1432-1033.1977.tb11743.x. [DOI] [PubMed] [Google Scholar]
  34. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  35. Salomon Y., Rodbell M. Evidence for specific binding sites for guanine nucleotides in adipocyte and hepatocyte plasma membranes. A difference in fate of GTP and guanosine 5'-(beta, gamma-imino) triphosphate. J Biol Chem. 1975 Sep 25;250(18):7245–7250. [PubMed] [Google Scholar]
  36. Schwabe U., Puchstein C., Hannemann H., Söchtig E. Activation of adenylate cyclase by vanadate. Nature. 1979 Jan 11;277(5692):143–145. doi: 10.1038/277143a0. [DOI] [PubMed] [Google Scholar]
  37. Sevilla N., Steer M. L., Levitzki A. Synergistic activation of adenylate cyclase by guanylyl imidophosphate and epinephrine. Biochemistry. 1976 Aug 10;15(16):3493–3499. doi: 10.1021/bi00661a015. [DOI] [PubMed] [Google Scholar]
  38. Svoboda M., Christophe J. The monovalent anions chloride and azide as potent activators of NaF- and p(NH)ppG-stimulation of pancreatic adenylate cyclase. FEBS Lett. 1978 Feb 15;86(2):230–234. doi: 10.1016/0014-5793(78)80568-7. [DOI] [PubMed] [Google Scholar]
  39. U'Prichard D. C., Bylund D. B., Snyder S. H. (+/-)-[3H]Epinephrine and (-)[3H]dihydroalprenolol binding to beta1- and beta2-noradrenergic receptors in brain, heart, and lung membranes. J Biol Chem. 1978 Jul 25;253(14):5090–5102. [PubMed] [Google Scholar]
  40. Wolff J., Cook G. H. Charge effects in the activation of adenylate cyclase. J Biol Chem. 1975 Sep 10;250(17):6897–6903. [PubMed] [Google Scholar]
  41. Yamamura H., Lad P. M., Rodbell M. GTP stimulates and inhibits adenylate cyclase in fat cell membranes through distinct regulatory processes. J Biol Chem. 1977 Nov 25;252(22):7964–7966. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES