Abstract
Subcutaneous implantation of demineralized diaphyseal bone matrix in allogeneic rats results in the local induction of endochondral bone differentiation. We have explored the potential of three dissociative extractants, 4 M guanidine hydrochloride (Gdn . HCl), 8 M urea/1 M NaCl, and 1% NaDodSO4 at pH 7.4, containing protease inhibitors to solubilize putative inductive molecules in the bone matrix. Extraction of bone matrix with any one of these extracts resulted in the loss of the bone inductive property. The solubilized extracts were then reconstituted with the residue by dialysis against water. The various reconstituted matrices were bioassayed for bone inductive potential by quantitation of alkaline phosphatase activity and 45Ca incorporation on day 12 after implantation. There was complete recovery of biological activity after reconstitution of the residues with each of the three extracts. Polyacrylamide gel electrophoresis of the extracts revealed similar protein profiles. Gel filtration of the 4 M Gdn. HCl extract on Sepharose CL-4B showed a heterogeneous broad peak. When fractions of that peak containing proteins less than 50,000 daltons were reconstituted with inactive 4 M Gdn . HCl-treated bone matrix and then implanted, new bone was induced. These observations demonstrate the dissociative extraction and successful biological reconstitution of bone inductive macromolecules in demineralized bone matrix.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anastassiades T., Puzic O., Puzic R. Effect of solubilized bone matrix components on cultured fibroblasts derived from neonatal rat tissues. Calcif Tissue Res. 1978 Dec 8;26(2):173–179. doi: 10.1007/BF02013253. [DOI] [PubMed] [Google Scholar]
- Green M. R., Pastewka J. V., Peacock A. C. Differential staining of phosphoproteins on polyacrylamide gels with a cationic carbocyanine dye. Anal Biochem. 1973 Nov;56(1):43–51. doi: 10.1016/0003-2697(73)90167-x. [DOI] [PubMed] [Google Scholar]
- Hanamura H., Higuchi Y., Nakagawa M., Iwata H., Nogami H., Urist M. R. Solubilized bone morphogenetic protein (BMP) from mouse osteosarcoma and rat demineralized bone matrix. Clin Orthop Relat Res. 1980 May;(148):281–290. [PubMed] [Google Scholar]
- Kleinman H. K., Klebe R. J., Martin G. R. Role of collagenous matrices in the adhesion and growth of cells. J Cell Biol. 1981 Mar;88(3):473–485. doi: 10.1083/jcb.88.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Peterkofsky B., Diegelmann R. Use of a mixture of proteinase-free collagenases for the specific assay of radioactive collagen in the presence of other proteins. Biochemistry. 1971 Mar 16;10(6):988–994. doi: 10.1021/bi00782a009. [DOI] [PubMed] [Google Scholar]
- Reddi A. H., Anderson W. A. Collagenous bone matrix-induced endochondral ossification hemopoiesis. J Cell Biol. 1976 Jun;69(3):557–572. doi: 10.1083/jcb.69.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddi A. H. Bone matrix in the solid state: geometric influence on differentiation of fibroblasts. Adv Biol Med Phys. 1974 Jun;15(0):1–18. doi: 10.1016/b978-0-12-005215-8.50007-3. [DOI] [PubMed] [Google Scholar]
- Reddi A. H. Cell biology and biochemistry of endochondral bone development. Coll Relat Res. 1981 Feb;1(2):209–226. doi: 10.1016/s0174-173x(81)80021-0. [DOI] [PubMed] [Google Scholar]
- Reddi A. H., Huggins C. B. Formation of bone marrow in fibroblast-transformation ossicles. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2212–2216. doi: 10.1073/pnas.72.6.2212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddi A. H., Huggins C. Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1601–1605. doi: 10.1073/pnas.69.6.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddi A. H., Sullivan N. E. Matrix-induced endochondral bone differentiation: influence of hypophysectomy, growth hormone, and thyroid-stimulating hormone. Endocrinology. 1980 Nov;107(5):1291–1299. doi: 10.1210/endo-107-5-1291. [DOI] [PubMed] [Google Scholar]
- Stoker M., O'Neill C., Berryman S., Waxman V. Anchorage and growth regulation in normal and virus-transformed cells. Int J Cancer. 1968 Sep 15;3(5):683–693. doi: 10.1002/ijc.2910030517. [DOI] [PubMed] [Google Scholar]
- Takaoka K., Ono K., Amitani K., Kishimoto R., Nakata Y. Solubilization and concentration of a bone-inducing substance from a murine osteosarcoma. Clin Orthop Relat Res. 1980 May;(148):274–280. [PubMed] [Google Scholar]
- Urist M. R., Mikulski A., Lietze A. Solubilized and insolubilized bone morphogenetic protein. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1828–1832. doi: 10.1073/pnas.76.4.1828. [DOI] [PMC free article] [PubMed] [Google Scholar]