Abstract
Arteries of hypertensive animals have a greater mass of smooth muscle than those of normotensive controls. We examined the contribution of smooth muscle cell hypertrophy and hyperplasia to this increase in mass. Cell size measurements obtained by (i) image analysis of enzyme-dispersed cells, (ii) morphometric evaluation of tissue sections, and (iii) biochemical measures of protein/cell and actin/cell ratios on isolated cells showed that average cell size was greater in spontaneously hypertensive rats than in normotensive Wistar-Kyoto and Sprague-Dawley controls. Average DNA/cell ratios were also increased in spontaneously hypertensive rats while protein/DNA ratios were not different. Analysis of nuclear DNA content of individual cells by flow microfluorimetry and Feulgen-DNA microdensitometry measurements showed that greater than 20% of spontaneously hypertensive rats cells were polyploid while less than 10% of control cells were polyploid. Estimates of cell number per centimeter of aortic length, based on ploidy and DNA content, show no difference between control and hypertensive rats. Thus, smooth muscle hypertrophy alone accounts for the increased mass of smooth muscle in aortas of spontaneously hypertensive rats. Furthermore, this cellular hypertrophy is accompanied by a change in nuclear ploidy. This nuclear response in hypertension may represent a fixed change related to the establishment of a chronic hypertensive state.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atkinson J., Boillat N., Pera-Bally R., Peters-Haefeli L., Kirchertz E. J. Effect of chronic clonidine treatment and its abrupt cessation on mean blood pressure of rats with a normal or an elevated blood pressure. Clin Sci (Lond) 1979 Aug;57(2):195–201. doi: 10.1042/cs0570195. [DOI] [PubMed] [Google Scholar]
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bevan R. D. An autoradiographic and pathological study of cellular proliferation in rabbit arteries correlated with an increase in arterial pressure. Blood Vessels. 1976;13(1-2):100–128. doi: 10.1159/000158083. [DOI] [PubMed] [Google Scholar]
- Bevan R. D., Eggena P., Hume W. R., Van Marthens E., Bevan J. A. Transient and persistent changes in rabbit blood vessels associated with maintained elevation in arterial pressure. Hypertension. 1980 Jan-Feb;2(1):63–72. doi: 10.1161/01.hyp.2.1.63. [DOI] [PubMed] [Google Scholar]
- Bevan R. D., van Marthens E., Bevan J. A. Hyperplasia of vascular smooth muscle in experimental hypertension in the rabbit. Circ Res. 1976 Jun;38(6 Suppl 2):58–62. doi: 10.1161/01.res.38.6.58. [DOI] [PubMed] [Google Scholar]
- Beznak M., Korecky B., Thomas G. Regression of cardiac hypertrophies of various origin. Can J Physiol Pharmacol. 1969 Jul;47(7):579–586. doi: 10.1139/y69-102. [DOI] [PubMed] [Google Scholar]
- Bhalla R. C., Webb R. C., Singh D., Ashley T., Brock T. Calcium fluxes, calcium binding, and adenosine cyclic 3',5'-monophosphate-dependent protein kinase activity in the aorta of spontaneously hypertensive and Kyoto Wistar normotensive rats. Mol Pharmacol. 1978 May;14(3):468–477. [PubMed] [Google Scholar]
- Bing O. H., Matsushita S., Fanburg B. L., Levine H. J. Mechanical properties of rat cardiac muscle during experimental hypertrophy. Circ Res. 1971 Feb;28(2):234–245. doi: 10.1161/01.res.28.2.234. [DOI] [PubMed] [Google Scholar]
- CAMERON I. L., CLEFFMANN G. INITIATION OF MITOSIS IN RELATION TO THE CELL CYCLE FOLLOWING FEEDING OF STARVED CHICKENS. J Cell Biol. 1964 May;21:169–174. doi: 10.1083/jcb.21.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CRANE W. A., DUTTA L. P. The utilisation of tritiated thymidine for deoxyribonucleic acid synthesis by the lesions of experimental hypertension in rats. J Pathol Bacteriol. 1963 Jul;86:83–97. doi: 10.1002/path.1700860110. [DOI] [PubMed] [Google Scholar]
- Chamley-Campbell J., Campbell G. R., Ross R. The smooth muscle cell in culture. Physiol Rev. 1979 Jan;59(1):1–61. doi: 10.1152/physrev.1979.59.1.1. [DOI] [PubMed] [Google Scholar]
- Darzynkiewicz Z., Evenson D. P., Staiano-Coico L., Sharpless T. K., Melamed M. L. Correlation between cell cycle duration and RNA content. J Cell Physiol. 1979 Sep;100(3):425–438. doi: 10.1002/jcp.1041000306. [DOI] [PubMed] [Google Scholar]
- Dean P. N., Jett J. H. Mathematical analysis of DNA distributions derived from flow microfluorometry. J Cell Biol. 1974 Feb;60(2):523–527. doi: 10.1083/jcb.60.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenstein R., Wied G. L. Myocardial DNA and protein in maturing and hypertrophied human hearts. Proc Soc Exp Biol Med. 1970 Jan;133(1):176–179. doi: 10.3181/00379727-133-34434. [DOI] [PubMed] [Google Scholar]
- FURUYAMA M. Histometrical investigations of arteries in reference to arterial hypertension. Tohoku J Exp Med. 1962 May 25;76:388–414. doi: 10.1620/tjem.76.388. [DOI] [PubMed] [Google Scholar]
- Fernandez D., Crane W. A. New cell formation in rats with accelerated hypertension due to partial aortic constriction. J Pathol. 1970 Apr;100(4):307–316. doi: 10.1002/path.1711000410. [DOI] [PubMed] [Google Scholar]
- Fujimoto W. Y., Teague J., Williams R. H. Fibroblast monolayer cultures in scintillation counting vials: metabolic and growth experiments using radioisotopes and a microfluoremetric DNA assay. In Vitro. 1977 Apr;13(4):237–244. doi: 10.1007/BF02615081. [DOI] [PubMed] [Google Scholar]
- GELFANT S. Initiation of mitosis in relation to the cell division cycle. Exp Cell Res. 1962 Mar;26:395–403. doi: 10.1016/0014-4827(62)90191-x. [DOI] [PubMed] [Google Scholar]
- GELFANT S. PATTERNS OF EPIDERMAL CELL DIVISION. I. GENETIC BEHAVIOR OF THE G1-CELL POPULATION. Exp Cell Res. 1963 Dec;32:521–528. doi: 10.1016/0014-4827(63)90191-5. [DOI] [PubMed] [Google Scholar]
- Gordon R. E., Lane B. P. Wound repair in rat tracheal epithelium. Division of G1 and G2-arrested cells following injury. Lab Invest. 1980 Jun;42(6):616–621. [PubMed] [Google Scholar]
- Grove D., Nair K. G., Zak R. Biochemical correlates of cardiac hypertrophy. 3. Changes in DNA content; the relative contributions of polyploidy and mitotic activity. Circ Res. 1969 Oct;25(4):463–471. doi: 10.1161/01.res.25.4.463. [DOI] [PubMed] [Google Scholar]
- Grove D., Zak R., Nair K. G., Aschenbrenner V. Biochemical correlates of cardiac hypertrophy. IV. Observations on the cellular organization of growth during myocardial hypertrophy in the rat. Circ Res. 1969 Oct;25(4):473–485. doi: 10.1161/01.res.25.4.473. [DOI] [PubMed] [Google Scholar]
- Hansen T. R., Bohr D. F. Hypertension, transmural pressure, and vascular smooth muscle response in rats. Circ Res. 1975 May;36(5):590–598. doi: 10.1161/01.res.36.5.590. [DOI] [PubMed] [Google Scholar]
- Holloway E. T., Bohr D. F. Reactivity of vascular smooth muscle in hypertensive rats. Circ Res. 1973 Dec;33(6):678–685. doi: 10.1161/01.res.33.6.678. [DOI] [PubMed] [Google Scholar]
- Ichijima K. Morphological studies on the peripheral small arteries of spontaneously hypertensive rats. Jpn Circ J. 1969 Aug;33(8):785–813. doi: 10.1253/jcj.33.785. [DOI] [PubMed] [Google Scholar]
- Jones A. W. Altered ion transport in vascular smooth muscle from spontaneously hypertensive rats. Influences of aldosterone, norepinephrine, and angiotensin. Circ Res. 1973 Nov;33(5):563–572. doi: 10.1161/01.res.33.5.563. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lundgren Y., Hallbäck M., Weiss L., Folkow B. Rate and extent of adaptive cardiovascular changes in rats during experimental renal hypertension. Acta Physiol Scand. 1974 May;91(1):103–115. doi: 10.1111/j.1748-1716.1974.tb05662.x. [DOI] [PubMed] [Google Scholar]
- Lundgren Y. Regression of structural cardiovascular changes after reversal of experimental renal hypertension in rats. Acta Physiol Scand. 1974 Jun;91(2):275–285. doi: 10.1111/j.1748-1716.1974.tb05683.x. [DOI] [PubMed] [Google Scholar]
- Malt R. A., Lemaitre D. A. Accretion and turnover of RNA in the renoprival kidney. Am J Physiol. 1968 May;214(5):1041–1047. doi: 10.1152/ajplegacy.1968.214.5.1041. [DOI] [PubMed] [Google Scholar]
- Mulvany M. J., Aalkjaer C., Christensen J. Changes in noradrenaline sensitivity and morphology of arterial resistance vessels during development of high blood pressure in spontaneously hypertensive rats. Hypertension. 1980 Sep-Oct;2(5):664–671. doi: 10.1161/01.hyp.2.5.664. [DOI] [PubMed] [Google Scholar]
- Mulvany M. J., Hansen O. K., Aalkjaer C. Direct evidence that the greater contractility of resistance vessels in spontaneously hypertensive rats is associated with a narrowed lumen, a thickened media, and an increased number of smooth muscle cell layers. Circ Res. 1978 Dec;43(6):854–864. doi: 10.1161/01.res.43.6.854. [DOI] [PubMed] [Google Scholar]
- Murphy R. A., Herlihy J. T., Megerman J. Force-generating capacity and contractile protein content of arterial smooth muscle. J Gen Physiol. 1974 Dec;64(6):691–705. doi: 10.1085/jgp.64.6.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Novi A. M., Baserga R. Association of hypertrophy and DNA synthesis in mouse salivary glands after chronic administration of isoproterenol. Am J Pathol. 1971 Mar;62(3):295–308. [PMC free article] [PubMed] [Google Scholar]
- OGAWA K. Changes in deoxyribonucleic acid during renal compensatory hypertrophy in the rat. Tex Rep Biol Med. 1961;19:825–832. [PubMed] [Google Scholar]
- OWEN M., MACPHERSON S. CELL POPULATION KINETICS OF AN OSTEOGENIC TISSUE. II. J Cell Biol. 1963 Oct;19:33–44. doi: 10.1083/jcb.19.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olivetti G., Anversa P., Melissari M., Loud A. V. Morphometry of medial hypertrophy in the rat thoracic aorta. Lab Invest. 1980 May;42(5):559–565. [PubMed] [Google Scholar]
- Radley J. M. Changes in ploidy in the rat submaxillary gland induced by isoprenaline. Exp Cell Res. 1967 Dec;48(3):679–681. doi: 10.1016/0014-4827(67)90343-6. [DOI] [PubMed] [Google Scholar]
- SANDRITTER W., SCOMAZZONI G. DEOXYRIBONUCLEIC ACID CONTENT (FEULGEN PHOTOMETRY) AND DRY WEIGHT (INTERFERENCE MICROSCOPY) OF NORMAL AND HYPERTROPHIC HEART MUSCLE FIBERS. Nature. 1964 Apr 4;202:100–101. doi: 10.1038/202100a0. [DOI] [PubMed] [Google Scholar]
- Sordahl L. A., McCollum W. B., Wood W. G., Schwartz A. Mitochondria and sarcoplasmic reticulum function in cardiac hypertrophy and failure. Am J Physiol. 1973 Mar;224(3):497–502. doi: 10.1152/ajplegacy.1973.224.3.497. [DOI] [PubMed] [Google Scholar]
- Thornthwaite J. T., Sugarbaker E. V., Temple W. J. Preparation of tissues for DNA flow cytometric analysis. Cytometry. 1980 Nov;1(3):229–237. doi: 10.1002/cyto.990010309. [DOI] [PubMed] [Google Scholar]
- Warshaw D. M., Mulvany M. J., Halpern W. Mechanical and morphological properties of arterial resistance vessels in young and old spontaneously hypertensive rats. Circ Res. 1979 Aug;45(2):250–259. doi: 10.1161/01.res.45.2.250. [DOI] [PubMed] [Google Scholar]
- Warshaw D. M., Mulvany M. J., Halpern W. Mechanical and morphological properties of arterial resistance vessels in young and old spontaneously hypertensive rats. Circ Res. 1979 Aug;45(2):250–259. doi: 10.1161/01.res.45.2.250. [DOI] [PubMed] [Google Scholar]
- Warshaw D. M., Root D. T., Halpern W. Effects of antihypertensive drug therapy on the morphology and mechanics of resistance arteries from spontaneously hypertensive rats. Blood Vessels. 1980;17(5):257–270. doi: 10.1159/000158255. [DOI] [PubMed] [Google Scholar]
- Weiss L. Long-term treatment with antihypertensive drugs in spontaneously hypertensive rats (SHR). Effects on blood pressure, survival rate and cardiovascular design. Acta Physiol Scand. 1974 Jul;91(3):393–408. doi: 10.1111/j.1748-1716.1974.tb05694.x. [DOI] [PubMed] [Google Scholar]
- Wiener J., Loud A. V., Giacomelli F., Anversa P. Morphometric analysis of hypertension-induced hypertrophy of rat thoracic aorta. Am J Pathol. 1977 Sep;88(3):619–634. [PMC free article] [PubMed] [Google Scholar]
- Wikman-Coffelt J., Parmley W. W., Mason D. T. The cardiac hypertrophy process. Analyses of factors determining pathological vs. physiological development. Circ Res. 1979 Dec;45(6):697–707. doi: 10.1161/01.res.45.6.697. [DOI] [PubMed] [Google Scholar]
- Wolinsky H., Daly M. M. A method for the isolation of intima-media samples from arteries. Proc Soc Exp Biol Med. 1970 Nov;135(2):364–368. doi: 10.3181/00379727-135-35052. [DOI] [PubMed] [Google Scholar]