Abstract
Running activity onset and estrous onset were recorded for hamsters exposed to progressively shorter daily light/dark (T) cycles. The period of the estrous cycle was a quadruple multiple of the period of the activity rhythm during entrainment to T cycles of 23.5-21.5 hr. There was no evidence of desynchronization of the activity and estrus rhythms. The very short estrous periods shown during exposure to short T cycles indicate that an intrinsic 96-hr interval for ovarian follicular maturation does not determine the period of the estrous cycle. Dissociation of estrous and running activity onsets occurred for all hamsters: estrous onset generally preceded running activity onset for T greater than or equal to 23.0 hr; for shorter T cycles, estrous onset generally lagged behind running activity onset. Wheel-running activity was intermittently split into entrained and free-running components for one female: at T = 22.0 hr, estrous onset was coupled first with one and then with the other of the split activity components. These findings suggest that two or more separate circadian oscillators may control timing of the activity and estrous rhythms.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alleva J. J., Waleski M. V., Alleva F. R. A biological clock controlling the estrous cycle of the hamster. Endocrinology. 1971 Jun;88(6):1368–1379. doi: 10.1210/endo-88-6-1368. [DOI] [PubMed] [Google Scholar]
- Aschoff J., Gerecke U., Wever R. Desynchronization of human circadian rhythms. Jpn J Physiol. 1967 Aug 15;17(4):450–457. doi: 10.2170/jjphysiol.17.450. [DOI] [PubMed] [Google Scholar]
- Aschoff J., Pohl H. Phase relations between a circadian rhythm and its zeitgeber within the range of entrainment. Naturwissenschaften. 1978 Feb;65(2):80–84. doi: 10.1007/BF00440545. [DOI] [PubMed] [Google Scholar]
- Bittman E. L., Goldman B. D. Serum levels of gonadotrophins in hamsters exposed to short photoperiods: effects of adrenalectomy and ovariectomy. J Endocrinol. 1979 Oct;83(1):113–118. doi: 10.1677/joe.0.0830113. [DOI] [PubMed] [Google Scholar]
- Bridges R. S., Goldman B. D. Diurnal rhythms in gonadotropins and progesterone in lactating and photoperiod induced acyclic hamsters. Biol Reprod. 1975 Dec;13(5):617–622. doi: 10.1095/biolreprod13.5.617. [DOI] [PubMed] [Google Scholar]
- Conaway C. H. Ecological adaptation and mammalian reproduction. Biol Reprod. 1971 Jun;4(3):239–247. doi: 10.1093/biolreprod/4.3.239. [DOI] [PubMed] [Google Scholar]
- Fitzgerald K., Zucker I. Circadian organization of the estrous cycle of the golden hamster. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2923–2927. doi: 10.1073/pnas.73.8.2923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman B. D., Mahesh V. B. A possible role of acute FSH-release in ovulation in the hamster, as demonstrated by utilization of antibodies to LH and FSH. Endocrinology. 1969 Feb;84(2):236–243. doi: 10.1210/endo-84-2-236. [DOI] [PubMed] [Google Scholar]
- Goldman B. D., Sheridan P. J. The ovulatory surge of gonadotropin and sexual receptivity in the female golden hamster. Physiol Behav. 1974 Jun;12(6):991–995. doi: 10.1016/0031-9384(74)90146-2. [DOI] [PubMed] [Google Scholar]
- Greenwald G. S. Preovulatory changes in ovulating hormone in the cyclic hamster. Endocrinology. 1971 Mar;88(3):671–677. doi: 10.1210/endo-88-3-671. [DOI] [PubMed] [Google Scholar]
- Menaker M., Eskin A. Entrainment of circadian rhythms by sound in Passer domesticus. Science. 1966 Dec 23;154(3756):1579–1581. doi: 10.1126/science.154.3756.1579. [DOI] [PubMed] [Google Scholar]
- Moore-Ede M. C., Kass D. A., Herd J. A. Transient circadian internal desynchronization after light-dark phase shift in monkeys. Am J Physiol. 1977 Jan;232(1):R31–R37. doi: 10.1152/ajpregu.1977.232.1.R31. [DOI] [PubMed] [Google Scholar]
- Moore-Ede M. C., Schmelzer W. S., Kass D. A., Herd J. A. Internal organization of the circadian timing system in multicellular animals. Fed Proc. 1976 Oct;35(12):2333–2338. [PubMed] [Google Scholar]
- Moore-Ede M. C., Sulzman F. M. The physiological basis of circadian timekeeping in primates. Physiologist. 1977 Jun;20(3):17–25. [PubMed] [Google Scholar]
- Morin L. P., Fitzgerald K. M., Zucker I. Estradiol shortens the period of hamster circadian rhythms. Science. 1977 Apr 15;196(4287):305–307. doi: 10.1126/science.557840. [DOI] [PubMed] [Google Scholar]
- Norman R. L., Blake C. A., Sawyer C. H. Delay of the proestrous ovulatory surge of LH in the hamster by pentobarbital or ether. Endocrinology. 1972 Oct;91(4):1025–1029. doi: 10.1210/endo-91-4-1025. [DOI] [PubMed] [Google Scholar]
- Reiter R. J., Richardson B. A., Johnson L. Y., Ferguson B. N., Dinh D. T. Pineal melatonin rhythm: reduction in aging Syrian hamsters. Science. 1980 Dec 19;210(4476):1372–1373. doi: 10.1126/science.7434032. [DOI] [PubMed] [Google Scholar]
- Seegal R. F., Goldman B. D. Effects of photoperiod on cyclicity and serum gonadotropins in the Syrian hamster. Biol Reprod. 1975 Mar;12(2):223–231. doi: 10.1095/biolreprod12.2.223. [DOI] [PubMed] [Google Scholar]
- Stetson M. H., Anderson P. J. Circadian pacemaker times gonadotropin release in free-running female hamsters. Am J Physiol. 1980 Jan;238(1):R23–R27. doi: 10.1152/ajpregu.1980.238.1.R23. [DOI] [PubMed] [Google Scholar]
- Stetson M. H., Watson-Whitmyre M. The neural clock regulating estrous cyclicity in hamsters: gonadotropin release following barbiturate blockade. Biol Reprod. 1977 May;16(4):536–542. [PubMed] [Google Scholar]