Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 May;77(5):2372–2376. doi: 10.1073/pnas.77.5.2372

Location of peptide fragments in the fibrinogen molecule by immunoelectron microscopy.

J N Telford, J A Nagy, P A Hatcher, H A Scheraga
PMCID: PMC349400  PMID: 6769127

Abstract

Antibodies to the disulfide knot fragment of bovine fibrinogen have been used to locate the site of this fragment within the intact fibrinogen molecule. The antibodies were isolated from rabbit antifibrinogen antisera by affinity chromatography. Electron micrographs of reaction mixtures of bovine fibrinogen and antibodies against the disulfide knot fragment showed pairs of fibrinogen molecules crosslinked by antibody molecules as well as higher order antibody-fibrinogen complexes. From an electron microscopic investigation of the crosslinked material, we conclude that the disulfide knot lies within the central nodule of the trinodular fibrinogen molecule. Antibodies to fragment H were used in the same manner to locate this fragment within the outer nodules of the human fibrinogen molecule.

Full text

PDF
2372

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blombäck B., Hessel B., Iwanaga S., Reuterby J., Blombäck M. Primary structure of human fibrinogen and fibrin. I. Clevage of fibrinogen with cyanogen bromide. Isolation and characterization of NH 2 -terminal fragments of the ("A") chain. J Biol Chem. 1972 Mar 10;247(5):1496–1512. [PubMed] [Google Scholar]
  2. Carr M. E., Jr, Hermans J. Size and density of fibrin fibers from turbidity. Macromolecules. 1978 Jan-Feb;11(1):46–50. doi: 10.1021/ma60061a009. [DOI] [PubMed] [Google Scholar]
  3. Chavez L. G., Jr, Scheraga H. A. Location of the antigenic determinants of bovine pancreatic ribonuclease. Biochemistry. 1979 Oct 2;18(20):4386–4395. doi: 10.1021/bi00587a019. [DOI] [PubMed] [Google Scholar]
  4. Cottrell B. A., Strong D. D., Watt K. W., Doolittle R. F. Amino acid sequence studies on the alpha chain of human fibrinogen. Exact location of cross-linking acceptor sites. Biochemistry. 1979 Nov 27;18(24):5405–5410. doi: 10.1021/bi00591a023. [DOI] [PubMed] [Google Scholar]
  5. Doolittle R. F. Structural aspects of the fibrinogen to fibrin conversion. Adv Protein Chem. 1973;27:1–109. doi: 10.1016/s0065-3233(08)60446-5. [DOI] [PubMed] [Google Scholar]
  6. Doolittle R. F., Watt K. W., Cottrell B. A., Strong D. D., Riley M. The amino acid sequence of the alpha-chain of human fibrinogen. Nature. 1979 Aug 9;280(5722):464–468. doi: 10.1038/280464a0. [DOI] [PubMed] [Google Scholar]
  7. Endres G. F., Scheraga H. A. Equilibria in the fibrinogen--fibrin conversion. 8. Polymerization of acceptor-modified fibrin monomer. Biochemistry. 1968 Dec;7(12):4219–4226. doi: 10.1021/bi00852a012. [DOI] [PubMed] [Google Scholar]
  8. Fowler W. E., Erickson H. P. Trinodular structure of fibrinogen. Confirmation by both shadowing and negative stain electron microscopy. J Mol Biol. 1979 Oct 25;134(2):241–249. doi: 10.1016/0022-2836(79)90034-2. [DOI] [PubMed] [Google Scholar]
  9. Frink R. J., Eisenberg D., Glitz D. G. Localization of the site of adenylylation of glutamine synthetase by electron microscopy of an enzyme-antibody complex. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5778–5782. doi: 10.1073/pnas.75.12.5778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gollwitzer R., Hahn E., Nowack H., Timpl R. Immunochemistry of bovine fibrinogen--I. immunogenic activity and diversity of antigenic determinants of reduced and carboxymethylated alpha, beta and gamma chains. Immunochemistry. 1975 Nov;12(11):893–897. doi: 10.1016/0019-2791(75)90247-5. [DOI] [PubMed] [Google Scholar]
  11. HALL C. E., SLAYTER H. S. The fibrinogen molecule: its size, shape, and mode of polymerization. J Biophys Biochem Cytol. 1959 Jan 25;5(1):11–16. doi: 10.1083/jcb.5.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hageman T. C., Scheraga H. A. Mechanism of action of thrombin on fibrinogen. Reaction of the n-terminal CNDr fragment from the Bbeta chain of bovine fibrinogen with bovine thrombin. Arch Biochem Biophys. 1977 Mar;179(2):506–517. doi: 10.1016/0003-9861(77)90139-4. [DOI] [PubMed] [Google Scholar]
  13. Krakow W., Endres G. F., Siegel B. M., Scheraga H. A. An electron microscopic investigation of the polymerization of bovine fibrin monomer. J Mol Biol. 1972 Oct 28;71(1):95–103. doi: 10.1016/0022-2836(72)90403-2. [DOI] [PubMed] [Google Scholar]
  14. LAKI K., GLADNER J. A. CHEMISTRY AND PHYSIOLOGY OF THE FIBRINOGEN-FIBRIN TRANSITION. Physiol Rev. 1964 Apr;44:127–160. doi: 10.1152/physrev.1964.44.2.127. [DOI] [PubMed] [Google Scholar]
  15. MERNAN J. P., SHERAGA H. A. The configuration of native and partially polymerized fibrinogen. Biochim Biophys Acta. 1953 Jul;11(3):329–336. doi: 10.1016/0006-3002(53)90052-3. [DOI] [PubMed] [Google Scholar]
  16. Marder V. J., Budzyński A. Z., James H. L. High molecular weight derivatives of human fibrinogen produced by plasmin. 3. Their NH2-terminal amino acids and comparison with the "NH2-terminal disulfide knot". J Biol Chem. 1972 Aug 10;247(15):4775–4781. [PubMed] [Google Scholar]
  17. McDonagh J., Messel H., McDonagh R. P., Jr, Murano G., Blombäck B. Molecular weight analysis of fibrinogen and fibrin chains by an improved sodium dodecyl sulfate gel electrophoresis method. Biochim Biophys Acta. 1972 Jan 26;257(1):135–142. doi: 10.1016/0005-2795(72)90262-0. [DOI] [PubMed] [Google Scholar]
  18. Valentine R. C., Green N. M. Electron microscopy of an antibody-hapten complex. J Mol Biol. 1967 Aug 14;27(3):615–617. doi: 10.1016/0022-2836(67)90063-0. [DOI] [PubMed] [Google Scholar]
  19. Whiting R. F., Ottensmeyer F. P. Heavy atoms in model compounds and nucleic acid imaged by dark field transmission electron microscopy. J Mol Biol. 1972 Jun 20;67(2):173–181. doi: 10.1016/0022-2836(72)90234-3. [DOI] [PubMed] [Google Scholar]
  20. Wieland F., Siess E. A., Renner L., Verfürth C., Lynen F. Distribution of yeast fatty acid synthetase subunits: three-dimensional model of the enzyme. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5792–5796. doi: 10.1073/pnas.75.12.5792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. de Murcia G., Lang M. C., Freund A. M., Fuchs R. P., Duane M. P., Sage E., Leng M. Electron microscopic visualization of N-acetoxy-N-2-acetylaminofluorene binding sites in ColE1 DNA by means of specific antibodies. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6076–6080. doi: 10.1073/pnas.76.12.6076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. van Nispen J. W., Hageman T. C., Scheraga H. A. Mechanism of action of thrombin on fibrinogen. The reaction of thrombin with fibrinogen-like peptides containing 11, 14, and 16 residues. Arch Biochem Biophys. 1977 Jul;182(1):227–243. doi: 10.1016/0003-9861(77)90303-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES