Abstract
Sarcoplasmic reticulum vesicles were exposed to various thiol-directed spin labels, and the position of the label on the inner or outer vesicle surface was investigated as a function of the ATPase (adenosinetriphosphatase; ATP phosphohydrolase, EC 3.6.1.3) chemical state. Previous measurements of label accessibility to externally added ascorbate had been considered to suggest an external-internal transition of protein-bound labels, coupled with ion translocation [Tonomura, Y. & Morales, M.F. (1974) Proc. Natl. Acad. Sci. USA 71, 3687-3691]. We show that these ascorbate studies do not lead to convincing conclusions. We demonstrate, on the contrary, that transition ions (nickel and ferricyanide) can be used as selective line-broadening agents for the signals arising from external labels. No significant difference in nickel- or ferricyanide-label interaction can be attributed to a different orientation of the label in any of the enzyme chemical states tested. Our results therefore contradict the current interpretation of ascorbate quenching experiments in terms of calcium ATPase rotatory motion; rather they are consistent with ion transport models involving only limited conformational rearrangements of the pump.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen J. P., Moller J. V. Reaction of sarcoplasmic reticulum Ca2+-ATPase in different functional states with 5,5'-dithiobis(2-nitrobenzoate). Biochim Biophys Acta. 1977 Nov 23;485(1):188–202. doi: 10.1016/0005-2744(77)90206-6. [DOI] [PubMed] [Google Scholar]
- Champeil P., Bastide F., Taupin C., Gary-Bobo C. M. Spin labelled sarcoplasmic reticulum vesicles: Ca2+-induced spectral changes. FEBS Lett. 1976 Apr 1;63(2):270–272. doi: 10.1016/0014-5793(76)80109-3. [DOI] [PubMed] [Google Scholar]
- Champeil P., Büschlen-Boucly S., Bastide F., Gary-Bobo C. Sarcoplasmic reticulum ATPase. Spin labeling detection of ligand-induced changes in the relative reactivities of certain sulfhydryl groups. J Biol Chem. 1978 Feb 25;253(4):1179–1186. [PubMed] [Google Scholar]
- Coan C. R., Inesi G. Ca2+-dependent effect of ATP on spin-labeled sarcoplasmic reticulum. J Biol Chem. 1977 May 10;252(9):3044–3049. [PubMed] [Google Scholar]
- Duggan P. F., Martonosi A. Sarcoplasmic reticulum. IX. The permeability of sarcoplasmic reticulum membranes. J Gen Physiol. 1970 Aug;56(2):147–167. doi: 10.1085/jgp.56.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dupont Y. Fluorescence studies of the sarcoplasmic reticulum calcium pump. Biochem Biophys Res Commun. 1976 Jul 26;71(2):544–550. doi: 10.1016/0006-291x(76)90821-4. [DOI] [PubMed] [Google Scholar]
- Dupont Y. Mechanism of the sarcoplasmic reticulum calcium pump. Fluorometric study of the phosphorylated intermediates. Biochem Biophys Res Commun. 1978 Jun 14;82(3):893–900. doi: 10.1016/0006-291x(78)90867-7. [DOI] [PubMed] [Google Scholar]
- Dutton A., Rees E. D., Singer S. J. An experiment eliminating the rotating carrier mechanism for the active transport of Ca ion in sarcoplasmic reticulum membranes. Proc Natl Acad Sci U S A. 1976 May;73(5):1532–1536. doi: 10.1073/pnas.73.5.1532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grinstein S., McCulloch L., Rothstein A. Transmembrane effects of irreversible inhibitors of anion transport in red blood cells. Evidence for mobile transport sites. J Gen Physiol. 1979 Apr;73(4):493–514. doi: 10.1085/jgp.73.4.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hasselbach W., Elfvin L. G. Structural and chemical asymmetry of the calcium-transporting membranes of the sarcotubular system as revealed by electron microscopy. J Ultrastruct Res. 1967 Mar;17(5):598–622. doi: 10.1016/s0022-5320(67)80143-6. [DOI] [PubMed] [Google Scholar]
- Hidalgo C., Thomas D. D. Heterogeneity of SH groups in sarcoplasmic reticulum. Biochem Biophys Res Commun. 1977 Oct 24;78(4):1175–1182. doi: 10.1016/0006-291x(77)91417-6. [DOI] [PubMed] [Google Scholar]
- Hidalgo C., Thomas D. D., Ikemoto N. Effect of the lipid environment on protein motion and enzymatic activity of sarcoplasmic reticulum calcium ATPase. J Biol Chem. 1978 Oct 10;253(19):6879–6887. [PubMed] [Google Scholar]
- Ho M. K., Guidotti G. A membrane protein from human erythrocytes involved in anion exchange. J Biol Chem. 1975 Jan 25;250(2):675–683. [PubMed] [Google Scholar]
- Ikemoto N. Transport and inhibitory Ca2+ binding sites on the ATPase enzyme isolated from the sarcoplasmic reticulum. J Biol Chem. 1975 Sep 25;250(18):7219–7224. [PubMed] [Google Scholar]
- Jardetzky O. Simple allosteric model for membrane pumps. Nature. 1966 Aug 27;211(5052):969–970. doi: 10.1038/211969a0. [DOI] [PubMed] [Google Scholar]
- Kaczorowski G. J., Robertson D. E., Kaback H. R. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 2. Effect of imposed delata psi, delta pH, and Delta mu H+. Biochemistry. 1979 Aug 21;18(17):3697–3704. doi: 10.1021/bi00584a010. [DOI] [PubMed] [Google Scholar]
- Kanazawa T., Yamada A., Yamamoto T., Tonomura Y. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal mus le. V. Vectorial requirements for calcium and magnesium ions of three partial reactions of ATPase: formation and decomposition of a phosphorylated intermediate and ATP-formation from ADP and the intermediate. J Biochem. 1971 Jul;70(1):95–123. doi: 10.1093/oxfordjournals.jbchem.a129631. [DOI] [PubMed] [Google Scholar]
- Kaplan J., Canonico P. G., Caspary W. J. Electron spin resonance studies of spin-labeled mammalian cells by detection of surface-membrane signals. Proc Natl Acad Sci U S A. 1973 Jan;70(1):66–70. doi: 10.1073/pnas.70.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keith A. D., Snipes W., Mehlhorn R. J., Gunter T. Factors restricting diffusion of water-soluble spin labels. Biophys J. 1977 Sep;19(3):205–218. doi: 10.1016/S0006-3495(77)85582-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keith A. D., Snipes W. Viscosity of cellular protoplasm. Science. 1974 Feb 15;183(4125):666–668. doi: 10.1126/science.183.4125.666. [DOI] [PubMed] [Google Scholar]
- Kornberg R. D., McConnell H. M. Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry. 1971 Mar 30;10(7):1111–1120. doi: 10.1021/bi00783a003. [DOI] [PubMed] [Google Scholar]
- Kurzmack M., Verjovski-Almeida S., Inesi G. Detection of an initial burst of Ca2+ translocation in sarcoplasmic reticulum. Biochem Biophys Res Commun. 1977 Sep 23;78(2):772–776. doi: 10.1016/0006-291x(77)90246-7. [DOI] [PubMed] [Google Scholar]
- Kyte J. The reactions of sodium and potassium ion-activated adenosine triphosphatase with specific antibodies. Implications for the mechanism of active transport. J Biol Chem. 1974 Jun 10;249(11):3652–3660. [PubMed] [Google Scholar]
- Lowe A. G. Enzyme mechanism for the active transport of sodium and potassium ions in animal cells. Nature. 1968 Aug 31;219(5157):934–936. doi: 10.1038/219934a0. [DOI] [PubMed] [Google Scholar]
- Makinose M. Possible functional states of the enzyme of the sarcoplasmic calcium pump. FEBS Lett. 1973 Dec 1;37(2):140–143. doi: 10.1016/0014-5793(73)80443-0. [DOI] [PubMed] [Google Scholar]
- Martonosi A., Fortier F. The effect of anti-ATPase antibodies upon the Ca++ transport of sarcoplasmic reticulum. Biochem Biophys Res Commun. 1974 Sep 9;60(1):382–389. doi: 10.1016/0006-291x(74)90216-2. [DOI] [PubMed] [Google Scholar]
- Martonosi A., Lagwinska E., Oliver M. Elementary processes in the hydrolysis of ATP by sarcoplasmic reticulum membranes. Ann N Y Acad Sci. 1974 Feb 18;227:549–567. doi: 10.1111/j.1749-6632.1974.tb14418.x. [DOI] [PubMed] [Google Scholar]
- McKinley D., Meissner G. Evidence for a K+, Na+ permeable channel in sarcoplasmic reticulum. J Membr Biol. 1978 Dec 15;44(2):159–186. doi: 10.1007/BF01976037. [DOI] [PubMed] [Google Scholar]
- Morse P. D., 2nd, Ruhlig M., Snipes W., Keith A. D. A spin-label study of the viscosity profile of sarcoplasmic reticular vesicles. Arch Biochem Biophys. 1975 May;168(1):40–56. doi: 10.1016/0003-9861(75)90226-x. [DOI] [PubMed] [Google Scholar]
- Morse P. D., 2nd Use of the spin label tempamine for measuring the internal viscosity of red blood cells. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1486–1491. doi: 10.1016/s0006-291x(77)80146-0. [DOI] [PubMed] [Google Scholar]
- Murphy A. J. Effects of divalent cations and nucleotides on the reactivity of the sulfhydryl groups of sarcoplasmic reticulum membranes. Evidence for structural changes occurring during the calcium transport cycle. J Biol Chem. 1978 Jan 25;253(2):385–389. [PubMed] [Google Scholar]
- Murphy A. J. Sulfhydryl group modification of sarcoplasmic reticulum membranes. Biochemistry. 1976 Oct 5;15(20):4492–4496. doi: 10.1021/bi00665a025. [DOI] [PubMed] [Google Scholar]
- Nakamura H., Hori H., Mitsui T. Conformational change in sarcoplasmic reticulum induced by ATP in the presence of magnesium ion and calcium ion. J Biochem. 1972 Sep;72(3):635–646. doi: 10.1093/oxfordjournals.jbchem.a129941. [DOI] [PubMed] [Google Scholar]
- Nakamura H. Spin-labeling of adenosine triphosphatase in sarcoplasmic reticulum membrane and change in the state of the spin labels induced by deoxycholate. J Biochem. 1977 Oct;82(4):923–930. doi: 10.1093/oxfordjournals.jbchem.a131795. [DOI] [PubMed] [Google Scholar]
- Nonessentiality of the active sulfhydryl group of rabbit muscle creatine kinase. J Biol Chem. 1974 May 25;249(10):3317–3318. [PubMed] [Google Scholar]
- Panet R., Pick U., Selinger Z. The role of calcium and magnesium in the adenosine triphosphatase reaction of sarcoplasmic reticulum. J Biol Chem. 1971 Dec 10;246(23):7349–7356. [PubMed] [Google Scholar]
- Pang D. C., Briggs F. N., Rogowski R. S. Analysis of the ATP-induced conformational changes in sarcoplasmic reticulum. Arch Biochem Biophys. 1974 Sep;164(1):332–340. doi: 10.1016/0003-9861(74)90039-3. [DOI] [PubMed] [Google Scholar]
- Shamoo A. E., Goldstein D. A. Isolation of ionophores from ion transport systems and their role in energy transduction. Biochim Biophys Acta. 1977 May 31;472(1):13–53. doi: 10.1016/0304-4157(77)90013-2. [DOI] [PubMed] [Google Scholar]
- Singer S. J. The molecular organization of membranes. Annu Rev Biochem. 1974;43(0):805–833. doi: 10.1146/annurev.bi.43.070174.004105. [DOI] [PubMed] [Google Scholar]
- Sumida M., Sasaki S. Inhibition of Ca2+ uptake into fragmented sarcoplasmic reticulum by antibodies against purified Ca2+, Mg2+-dependent ATPase. J Biochem. 1975 Oct;78(4):757–762. doi: 10.1093/oxfordjournals.jbchem.a130964. [DOI] [PubMed] [Google Scholar]
- Sumida M., Tonomura Y. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. X. Direct evidence for Ca2 plus translocation coupled with formation of a phosphorylated intermediate. J Biochem. 1974 Feb;75(2):283–297. doi: 10.1093/oxfordjournals.jbchem.a130396. [DOI] [PubMed] [Google Scholar]
- Sumida M., Wang T., Mandel F., Froehlich J. P., Schwartz A. Transient kinetics of Ca2+ transport of sarcoplasmic reticulum. A comparison of cardiac and skeletal muscle. J Biol Chem. 1978 Dec 25;253(24):8772–8777. [PubMed] [Google Scholar]
- Thorley-Lawson D. A., Green N. M. The reactivity of the thiol groups of the adenosine triphosphatase of sarcoplasmic reticulum and their location on tryptic fragments of the molecule. Biochem J. 1977 Dec 1;167(3):739–748. doi: 10.1042/bj1670739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tonomura Y., Morales M. F. Change in state of spin labels bound to sarcoplasmic reticulum with change in enzymic state, as deduced from ascorbate-quenching studies. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3687–3691. doi: 10.1073/pnas.71.9.3687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verjovski-Almeida S., Kurzmack M., Inesi G. Partial reactions in the catalytic and transport cycle of sarcoplasmic reticulum ATPase. Biochemistry. 1978 Nov 14;17(23):5006–5013. doi: 10.1021/bi00616a023. [DOI] [PubMed] [Google Scholar]
- Yamada S., Ikemoto N. Distinction of thiols involved in the specific reaction steps of the Ca2+-ATPase of the sarcoplasmic reticulum. J Biol Chem. 1978 Oct 10;253(19):6801–6807. [PubMed] [Google Scholar]
- Yamamoto T., Tonomura Y. Chemical modification of the Ca2+ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. II. Use of 2, 4, 6-trinitrobenzenesulfonate to show functional movements of the ATPase molecule. J Biochem. 1976 Apr;79(4):693–707. doi: 10.1093/oxfordjournals.jbchem.a131121. [DOI] [PubMed] [Google Scholar]
- Yamamoto T., Tonomura Y. Chemical modification of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. III. Changes in the distribution of exposed lysine residues among subfragments with change in enzymatic state. J Biochem. 1977 Sep;82(3):653–660. doi: 10.1093/oxfordjournals.jbchem.a131740. [DOI] [PubMed] [Google Scholar]
- Yariv J., Steinberg I. Z., Kalb A. J., Goldman R., Katchalski E. Permease as a rotatory carrier. J Theor Biol. 1972 Jun;35(3):459–465. doi: 10.1016/0022-5193(72)90144-0. [DOI] [PubMed] [Google Scholar]
