Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 May;77(5):2559–2563. doi: 10.1073/pnas.77.5.2559

Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase.

G C Ford, G Eichele, J N Jansonius
PMCID: PMC349441  PMID: 6930651

Abstract

X-ray diffraction studies to 2.8-A resolution have yielded the three-dimensional structure of mitochondrial aspartate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase, EC 2.6.1.1), an isologous alpha 2 dimer (Mr = 2 x 45,000). The subunits are rich in secondary structure and contain two domains, one of which anchors the coenzyme, pyridoxal 5'-phosphate. Each active site lies between the subunits and is composed of residues from both of them.

Full text

PDF
2559

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. J., Haas D. J., Jeffery B. A., McPherson A., Jr, Mermall H. L., Rossmann M. G., Schevitz R. W., Wonacott A. J. Low resolution study of crystalline L-lactate dehydrogenase. J Mol Biol. 1969 Apr;41(2):159–188. doi: 10.1016/0022-2836(69)90383-0. [DOI] [PubMed] [Google Scholar]
  2. Arnone A., Rogers P. H., Schmidt J., Han C., Harris C. M., Metzler D. E. Preliminary crystallographic study of aspartate: 2-oxoglutarate aminotransferase from pig heart. J Mol Biol. 1977 May 25;112(3):509–513. doi: 10.1016/s0022-2836(77)80196-4. [DOI] [PubMed] [Google Scholar]
  3. Arrio-Dupont M., Coulet P. R. Aspartate aminotransferase immobilized on collagen films. Activity of dissociated subunits. Biochem Biophys Res Commun. 1979 Jul 27;89(2):345–352. doi: 10.1016/0006-291x(79)90636-3. [DOI] [PubMed] [Google Scholar]
  4. Arrio-Dupont M. Fluorescence of aromatic amino acids in a pyridoxal phosphate enzyme: aspartate aminotransferase. Eur J Biochem. 1978 Nov 15;91(2):369–378. doi: 10.1111/j.1432-1033.1978.tb12689.x. [DOI] [PubMed] [Google Scholar]
  5. Barra D., Bossa F., Doonan S., Fahmy H. M., Hughes G. J., Kakoz K. Y., Martini F., Petruzzelli R. The structure of mitochondrial asparate aminotransferase from pig heart and comparison with that of the cytoplasmic isozyme. FEBS Lett. 1977 Nov 15;83(2):241–244. doi: 10.1016/0014-5793(77)81013-2. [DOI] [PubMed] [Google Scholar]
  6. Birchmeier W., Wilson K. J., Christen P. Cytoplasmic aspartate aminotransferase: syncatalytic sulfhydryl group modification. J Biol Chem. 1973 Mar 10;248(5):1751–1759. [PubMed] [Google Scholar]
  7. Birchmeier W., Wilson K. J., Christen P. Syncatalytic modification of cytoplasmic aspartate aminotransferase: identification of a peptide containing the modified cysteinyl residue. FEBS Lett. 1972 Oct 1;26(1):113–116. doi: 10.1016/0014-5793(72)80554-4. [DOI] [PubMed] [Google Scholar]
  8. Boettcher B., Martinez-Carrion M. Itemizing enzyme ligand interactions in native and and half-active hybrid aspartate transaminase to probe site-site relationships. Biochemistry. 1976 Dec 14;15(25):5657–5664. doi: 10.1021/bi00670a035. [DOI] [PubMed] [Google Scholar]
  9. Borisov V. V., Borisova S. N., Kachalova G. S., Sosfenov N. I., Vainshtein B. K., Torchinsky Y. M., Braunstein A. E. Three-dimensional structure at 5 A resolution of cytosolic aspartate transaminase from chicken heart. J Mol Biol. 1978 Nov 5;125(3):275–292. doi: 10.1016/0022-2836(78)90403-5. [DOI] [PubMed] [Google Scholar]
  10. Colman P. M., Jansonius J. N., Matthews B. W. The structure of thermolysin: an electron density map at 2-3 A resolution. J Mol Biol. 1972 Oct 14;70(3):701–724. doi: 10.1016/0022-2836(72)90569-4. [DOI] [PubMed] [Google Scholar]
  11. Deyev S. M., Afanasenko G. A., Polyanovsky O. L. Two-step modification of aspartate aminotransferase with 1,5-difluoro-2,4-dinitrobenzene. Cross-link localization. Biochim Biophys Acta. 1978 Jun 21;534(2):358–367. doi: 10.1016/0005-2795(78)90019-3. [DOI] [PubMed] [Google Scholar]
  12. Dunathan H. C. Stereochemical aspects of pyridoxal phosphate catalysis. Adv Enzymol Relat Areas Mol Biol. 1971;35:79–134. doi: 10.1002/9780470122808.ch3. [DOI] [PubMed] [Google Scholar]
  13. Dunathan H. C., Voet J. G. Stereochemical evidence for the evolution of pyridoxal-phosphate enzymes of various function from a common ancestor. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3888–3891. doi: 10.1073/pnas.71.10.3888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eichele G., Ford G. C., Glor M., Jansonius J. N., Mavrides C., Christen P. The three-dimensional structure of mitochondrial aspartate aminotransferase at 4.5 A resolution. J Mol Biol. 1979 Sep 5;133(1):161–180. doi: 10.1016/0022-2836(79)90255-9. [DOI] [PubMed] [Google Scholar]
  15. Eichele G., Ford G. C., Jansonius J. N. Crystallization of pig mitochondrial aspartate aminotransferase by seeding with crystals of the chicken mitochondrial isoenzyme. J Mol Biol. 1979 Dec 5;135(2):513–516. doi: 10.1016/0022-2836(79)90451-0. [DOI] [PubMed] [Google Scholar]
  16. Eichele G., Karabelnik D., Halonbrenner R., Jansonius J. N., Christen P. Catalytic activity in crystals of mitochondrial aspartate aminotransferase as detected by microspectrophotometry. J Biol Chem. 1978 Aug 10;253(15):5239–5242. [PubMed] [Google Scholar]
  17. Gehring H., Christen P., Eichele G., Glor M., Jansonius J. N., Reimer A. S., Smit J. D., Thaller C. Isolation, crystallization and preliminary crystallographic data of aspartate aminotransferase from chicken heart mitochondria. J Mol Biol. 1977 Sep;115(1):97–101. doi: 10.1016/0022-2836(77)90249-2. [DOI] [PubMed] [Google Scholar]
  18. Gehring H., Christen P. Syncatalytic conformational changes in mitochondrial aspartate aminotransferases. Evidence from modification and demodification of Cys 166 in the enzyme from chicken and pig. J Biol Chem. 1978 May 10;253(9):3158–3163. [PubMed] [Google Scholar]
  19. Gilbert H. F., O'Leary M. H. Arginine as a substrate binding site in aspartate aminotransferase. Biochem Biophys Res Commun. 1975 Nov 3;67(1):198–202. doi: 10.1016/0006-291x(75)90302-2. [DOI] [PubMed] [Google Scholar]
  20. HUGHES R. C., JENKINS W. T., FISCHER E. H. The site of binding of pyridoxal-5'-phosphate to heart glutamic-aspartic transaminase. Proc Natl Acad Sci U S A. 1962 Sep 15;48:1615–1618. doi: 10.1073/pnas.48.9.1615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hol W. G., van Duijnen P. T., Berendsen H. J. The alpha-helix dipole and the properties of proteins. Nature. 1978 Jun 8;273(5662):443–446. doi: 10.1038/273443a0. [DOI] [PubMed] [Google Scholar]
  22. Ivanov V. I., Karpeisky M. Y. Dynamic three-dimensional model for enzymic transamination. Adv Enzymol Relat Areas Mol Biol. 1969;32:21–53. doi: 10.1002/9780470122778.ch2. [DOI] [PubMed] [Google Scholar]
  23. Kagamiyama H., Sakakibara R., Wada H., Tanase S., Morino Y. The complete amino acid seqeunce of mitochondrial asparatate aminotransferase from pig heart. J Biochem. 1977 Jul;82(1):291–294. doi: 10.1093/oxfordjournals.jbchem.a131682. [DOI] [PubMed] [Google Scholar]
  24. Martinez-Carrion M. 31P nuclear-magnetic-resonance studies of pyridoxal and pyridoxamine phosphates. Interaction with cytoplasmic aspartate transaminase. Eur J Biochem. 1975 May;54(1):39–43. doi: 10.1111/j.1432-1033.1975.tb04111.x. [DOI] [PubMed] [Google Scholar]
  25. Martinez-Carrion M., Turano C., Riva F., Fasella P. Evidence of a critical histidine residue in soluble aspartic aminotransferase. J Biol Chem. 1967 Apr 10;242(7):1426–1430. [PubMed] [Google Scholar]
  26. Metzler C. M., Metzler D. E., Martin D. S., Newman R., Arnone A., Rogers P. Crystalline enzyme.substrate complexes of asparate aminotransferase. J Biol Chem. 1978 Aug 10;253(15):5251–5254. [PubMed] [Google Scholar]
  27. Metzler D. E. Tautomerism in pyridoxal phosphate and in enzymatic catalysis. Adv Enzymol Relat Areas Mol Biol. 1979;50:1–40. doi: 10.1002/9780470122952.ch1. [DOI] [PubMed] [Google Scholar]
  28. Mozzarelli A., Ottonello S., Rossi G. L., Fasella P. Catalytic activity of aspartate aminotransferase in the crystal. Equilibrium and kinetic analysis. Eur J Biochem. 1979 Jul;98(1):173–179. doi: 10.1111/j.1432-1033.1979.tb13174.x. [DOI] [PubMed] [Google Scholar]
  29. Ovchinnikov Y. A., Egorov C. A., Aldanova N. A., Feigina M. Y., Lipkin V. M., Abdulaev N. G., Grishin E. V., Kiselev A. P., Modyanov N. N., Braunstein A. E. The complete amino acid sequence of cytoplasmic aspartate aminotransferase from pig heart. FEBS Lett. 1973 Jan 1;29(1):31–34. doi: 10.1016/0014-5793(73)80008-0. [DOI] [PubMed] [Google Scholar]
  30. Peterson D. L., Martinez-Carrion M. The mechanism of transamination. Function of the histidyl residue at the active site of supernatant aspartate transaminase. J Biol Chem. 1970 Feb 25;245(4):806–813. [PubMed] [Google Scholar]
  31. Polyanovsky O. L., Demidkina T. V. The position of an essential tyrosine residue in the polypeptide chain of aspartate transaminase. FEBS Lett. 1972 Jun 15;23(2):262–264. doi: 10.1016/0014-5793(72)80356-9. [DOI] [PubMed] [Google Scholar]
  32. Richards F. M. The matching of physical models to three-dimensional electron-density maps: a simple optical device. J Mol Biol. 1968 Oct 14;37(1):225–230. doi: 10.1016/0022-2836(68)90085-5. [DOI] [PubMed] [Google Scholar]
  33. Richardson J. S. beta-Sheet topology and the relatedness of proteins. Nature. 1977 Aug 11;268(5620):495–500. doi: 10.1038/268495a0. [DOI] [PubMed] [Google Scholar]
  34. Riordan J. F., Scandurra R. Essential arginyl residues in aspartate aminotransferases. Biochem Biophys Res Commun. 1975 Sep 2;66(1):417–424. doi: 10.1016/s0006-291x(75)80344-5. [DOI] [PubMed] [Google Scholar]
  35. Rossmann M. G., Moras D., Olsen K. W. Chemical and biological evolution of nucleotide-binding protein. Nature. 1974 Jul 19;250(463):194–199. doi: 10.1038/250194a0. [DOI] [PubMed] [Google Scholar]
  36. Schlegel H., Zaoralek P. E., Christen P. Aspartate aminotransferase. Determination of the active site occupancy pattern indicates independent transamination of the two subunits. J Biol Chem. 1977 Aug 25;252(16):5835–5838. [PubMed] [Google Scholar]
  37. Schulz G. E., Schirmer R. H., Sachsenheimer W., Pai E. F. The structure of the flavoenzyme glutathione reductase. Nature. 1978 May 11;273(5658):120–124. doi: 10.1038/273120a0. [DOI] [PubMed] [Google Scholar]
  38. Shaw P. J., Muirhead H. The active site of glucose phosphate isomerase. FEBS Lett. 1976 May 15;65(1):50–55. doi: 10.1016/0014-5793(76)80619-9. [DOI] [PubMed] [Google Scholar]
  39. Shlyapnikov S. V., Myasnikov A. N., Severin E. S., Myagkova M. A., Torchinsky Y. M., Braunstein A. E. Primary structure of cytoplasmic aspartate aminotransferase from chicken heart and its homology with pig heart isoenzymes. FEBS Lett. 1979 Oct 15;106(2):385–388. doi: 10.1016/0014-5793(79)80537-2. [DOI] [PubMed] [Google Scholar]
  40. Sternberg M. J., Thornton J. M. On the conformation of proteins: the handedness of the connection between parallel beta-strands. J Mol Biol. 1977 Feb 25;110(2):269–283. doi: 10.1016/s0022-2836(77)80072-7. [DOI] [PubMed] [Google Scholar]
  41. Sygusch J., Madsen N. B., Kasvinsky P. J., Fletterick R. J. Location of pyridoxal phosphate in glycogen phosphorylase a. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4757–4761. doi: 10.1073/pnas.74.11.4757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tanase S., Kojima H., Morino Y. Pyridoxal 5'-phosphate binding site of pig heart alanine aminotransferase. Biochemistry. 1979 Jul 10;18(14):3002–3007. doi: 10.1021/bi00581a015. [DOI] [PubMed] [Google Scholar]
  43. Torchinsky Y. M., Zufarova R. A., Agalarova M. B., Severin E. S. Identification of the functionally important cysteinyl residue in pig heart aspartate aminotransferase. FEBS Lett. 1972 Dec 15;28(3):302–304. doi: 10.1016/0014-5793(72)80736-1. [DOI] [PubMed] [Google Scholar]
  44. Turano C., Barra D., Bossa F., Ferraro A., Giartosio A. The effect of tetranitromethane on apo-aspartate-aminotransferase from pig heart. Eur J Biochem. 1971 Nov 11;23(2):349–354. doi: 10.1111/j.1432-1033.1971.tb01628.x. [DOI] [PubMed] [Google Scholar]
  45. Vederas J. C., Reingold I. D., Sellers H. W. Stereospecificity of sodium borohydride reduction of tyrosine decarboxylase from Streptococcus faecalis. J Biol Chem. 1979 Jun 25;254(12):5053–5057. [PubMed] [Google Scholar]
  46. Weber I. T., Johnson L. N., Wilson K. S., Yeates D. G., Wild D. L., Jenkins J. A. Crystallographic studies on the activity of glycogen phosphorylase b. Nature. 1978 Aug 3;274(5670):433–437. doi: 10.1038/274433a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES