Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 May;77(5):2587–2591. doi: 10.1073/pnas.77.5.2587

Immunological identification of high molecular weight forms common to bovine neurophysin and vasopressin

Pierre Nicolas *, Maryse Camier *, Marc Lauber *, Marie-J O Masse *, Jan Möhring †,, Paul Cohen *
PMCID: PMC349447  PMID: 6156453

Abstract

Extracts of bovine neurohypophysis made in acid/ethanol solution containing protease inhibitors were fractionated by two successive filtrations on Sephadex G-75 columns equilibrated in the presence and then in the absence of 4 M urea. Analysis of the pattern of neurophysin-like immunoreactivity in the eluate, with two different antibodies, indicated the presence of high Mr forms of neurophysin (apparent sizes, [unk]70,000 and 20,000-25,000, respectively) besides the Mr 10,000 neurophysin. [8-Arginine]vasopressin-like immunoreactivity was also detected, coeluting with the neurophysin-like species, in the material recovered in the exclusion and Mr 20,000-25,000 elution volumes of the same molecular sieve fractionation of neurohypophyseal extracts. Upon subsequent Sephadex G-150 filtration, the immunoreactive material recovered in the exclusion volume of the Sephadex G-75 filtration showed an apparent Mr of approximately 140,000. Both neurophysin-like and vasopressin-like immunoreactivities coeluted in the same volume. The elution profile of this Mr 140,000 material was unmodified when reanalyzed by the same molecular sieve filtration after exposure to 8 M urea. When these Mr 140,000 immunoreactive forms of vasopressin and neurophysin were submitted to affinity chromatography on anti-neurophysin antibodies immobilized on Sepharose, both immunoreactivities were selectively coadsorbed to the immunoadsorbent. Similarly, the neurophysin and vasopressin immunoreactivities associated with Mr≈25,000 were retained together on the same anti-neurophysin immunoadsorbent. The Mr 140,000 and Mr 25,000 species having both neurophysin and [8-arginine]vasopressin antigenic determinants generated the two neurosecretory components when exposed to proteolytic activities. This in vitro processing was inhibited in acid medium, at low temperature, and in the presence of a mixture of protease inhibitors. It is concluded that these two large forms of proteins containing both neurophysin and vasopressin may represent common biosynthetic precursors of these two neurohypophyseal components.

Keywords: prohormones, radioimmunoassay, affinity chromatography, proteolytic enzymes, neurohypophysis

Full text

PDF
2587

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger E. A., Shooter E. M. Evidence for pro-beta-nerve growth factor, a biosynthetic precursor to beta-nerve growth factor. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3647–3651. doi: 10.1073/pnas.74.9.3647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Breslow E. Chemistry and biology of the neurophysins. Annu Rev Biochem. 1979;48:251–274. doi: 10.1146/annurev.bi.48.070179.001343. [DOI] [PubMed] [Google Scholar]
  3. Brownstein M. J., Gainer H. Neurophysin biosynthesis in normal rats and in rats with hereditary diabetes insipidus. Proc Natl Acad Sci U S A. 1977 Sep;74(9):4046–4049. doi: 10.1073/pnas.74.9.4046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Camier M., Lauber M., Möhring J., Cohen P. Evidence for higher molecular weight immunoreactive forms of vasopressin in the mouse hypothalamus. Relationships with putative proneurophysins. FEBS Lett. 1979 Dec 15;108(2):369–373. doi: 10.1016/0014-5793(79)80566-9. [DOI] [PubMed] [Google Scholar]
  5. Cohen P., Nicolas P., Camier M. Biochemical aspects of neurosecretion: neurophysin--neurohypophyseal hormone complexes. Curr Top Cell Regul. 1979;15:263–318. doi: 10.1016/b978-0-12-152815-7.50011-9. [DOI] [PubMed] [Google Scholar]
  6. Fawcett C. P., Powell A. E., Sachs H. Biosynthesis and release of neurophysin. Endocrinology. 1968 Dec;83(6):1299–1310. doi: 10.1210/endo-83-6-1299. [DOI] [PubMed] [Google Scholar]
  7. Frey P., Forand R., Maciag T., Shooter E. M. The biosynthetic precursor of epidermal growth factor and the mechanism of its processing. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6294–6298. doi: 10.1073/pnas.76.12.6294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gainer H., Sarne Y., Brownstein M. J. Neurophysin biosynthesis: conversion of a putative precursor during axonal transport. Science. 1977 Mar 25;195(4284):1354–1356. doi: 10.1126/science.65791. [DOI] [PubMed] [Google Scholar]
  9. Giudice L. C., Chaiken I. M. Immunological and chemical identification of a neurophysin-containing protein coded by messenger RNA from bovine hypothalamus. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3800–3804. doi: 10.1073/pnas.76.8.3800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kemper B., Habener J. F., Potts J. T., Jr, Rich A. Proparathyroid hormone: identification of a biosynthetic precursor to parathyroid hormone. Proc Natl Acad Sci U S A. 1972 Mar;69(3):643–647. doi: 10.1073/pnas.69.3.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klug T. L., Adelman R. C. Evidence for a large thyrotropin and its accumulation during aging in rats. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1431–1437. doi: 10.1016/s0006-291x(77)80139-3. [DOI] [PubMed] [Google Scholar]
  12. Lauber M., Camier M., Cohen P. Higher molecular weight forms of immunoreactive somatostatin in mouse hypothalamic extracts: evidence of processing in vitro. Proc Natl Acad Sci U S A. 1979 Nov;76(11):6004–6008. doi: 10.1073/pnas.76.11.6004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lauber M., Camier M., Cohen P. Immunological and biochemical characterization of distinct high molecular weight forms of neurophysin and somatostatin in mouse hypothalamus extracts. FEBS Lett. 1979 Jan 15;97(2):343–347. doi: 10.1016/0014-5793(79)80118-0. [DOI] [PubMed] [Google Scholar]
  14. Legros J. J., Franchimont P. Comparison between radio-immunological behavior of purified human, bovine and porcine neurophysins. Ann Endocrinol (Paris) 1974 Mar-Apr;35(2):189–194. [PubMed] [Google Scholar]
  15. Lin C., Joseph-Bravo P., Sherman T., Chan L., McKelvy J. F. Cell-free synthesis of putative neurophysin precursors from rat and mouse hypothalamic poly (A)-RNA. Biochem Biophys Res Commun. 1979 Aug 13;89(3):943–950. doi: 10.1016/0006-291x(79)91869-2. [DOI] [PubMed] [Google Scholar]
  16. Liu T. C., Ax R. L., Jackson G. L. Characterization of luteinizing hormone synthesized and released by rat pituitaries in vitro: dissociation of immunological and biological activities. Endocrinology. 1979 Jul;105(1):10–15. doi: 10.1210/endo-105-1-10. [DOI] [PubMed] [Google Scholar]
  17. Mains R. E., Eipper B. A., Ling N. Common precursor to corticotropins and endorphins. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3014–3018. doi: 10.1073/pnas.74.7.3014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Möhring B., Möhring J. Plasma ADH in normal Long-Evans rats and in Long-Evans rats heterozygous and homozygous for hypothalamic diabetes insipidus. Life Sci. 1975 Oct 15;17(8):1307–1314. doi: 10.1016/0024-3205(75)90143-5. [DOI] [PubMed] [Google Scholar]
  19. Nakanishi S., Inoue A., Kita T., Nakamura M., Chang A. C., Cohen S. N., Numa S. Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor. Nature. 1979 Mar 29;278(5703):423–427. doi: 10.1038/278423a0. [DOI] [PubMed] [Google Scholar]
  20. Nicolas P., Camier M., Dessen P., Cohen P. Interactions of oxytocin and vasopressin with bovine neurophysins I and II. Effects of hormone binding on the protein quaternary structure: a simple model. J Biol Chem. 1976 Jul 10;251(13):3965–3971. [PubMed] [Google Scholar]
  21. Reichert L. E., Jr, Ramsey R. B. Evidence for the existence of a large molecular weight protein in human pituitary tissue having follicle stimulating hormone activity. J Clin Endocrinol Metab. 1977 Mar;44(3):545–552. doi: 10.1210/jcem-44-3-545. [DOI] [PubMed] [Google Scholar]
  22. Roberts J. L., Herbert E. Characterization of a common precursor to corticotropin and beta-lipotropin: identification of beta-lipotropin peptides and their arrangement relative to corticotropin in the precursor synthesized in a cell-free system. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5300–5304. doi: 10.1073/pnas.74.12.5300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Russell J. T., Brownstein M. J., Gainer H. Trypsin liberates an arginine vasopressin-like peptide and neurophysin from a Mr 20,000 putative common precursor. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6086–6090. doi: 10.1073/pnas.76.12.6086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SACHS H., TAKABATAKE Y. EVIDENCE FOR A PRECURSOR IN VASOPRESSIN BIOSYNTHESIS. Endocrinology. 1964 Dec;75:943–948. doi: 10.1210/endo-75-6-943. [DOI] [PubMed] [Google Scholar]
  25. Schmale H., Leipold B., Richter D. Cell-free translation of bovine hypothalamic mRNA. Synthesis and processing of the prepro-neurophysin I and II. FEBS Lett. 1979 Dec 15;108(2):311–316. doi: 10.1016/0014-5793(79)80553-0. [DOI] [PubMed] [Google Scholar]
  26. Stachura M. E., Frohman L. A. Growth hormone: independent release of big and small forms from rat pituitary in vitro. Science. 1975 Feb 7;187(4175):447–449. doi: 10.1126/science.1111113. [DOI] [PubMed] [Google Scholar]
  27. Steiner D. F., Oyer P. E. The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma. Proc Natl Acad Sci U S A. 1967 Feb;57(2):473–480. doi: 10.1073/pnas.57.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. TAKABATAKE Y., SACHS H. VASOPRESSIN BIOSYNTHESIS. 3. IN VITRO STUDIES. Endocrinology. 1964 Dec;75:934–942. doi: 10.1210/endo-75-6-934. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES