Abstract
Facts relating to the mechanism of phosphoryl transfer by acetate kinase (ATP:acetate phosphotransferase, EC 2.7.2.1) are reviewed. They point to the existence of at least one experimentally established phosphoenzyme (E-P) intermediate on the reaction pathway. Sterically, the phosphoryl transfer occurs with a net inversion of the configuration of the phosphorus atom. These facts are best in accord with a triple-displacement mode of action for acetate kinase, with two E-P intermediates and three steric inversions on phosphorus. It follows that a second E-P for acetate kinase must exist.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson C. M., Stenkamp R. E., McDonald R. C., Steitz T. A. A refined model of the sugar binding site of yeast hexokinase B. J Mol Biol. 1978 Aug 5;123(2):207–219. doi: 10.1016/0022-2836(78)90321-2. [DOI] [PubMed] [Google Scholar]
- Anthony R. S., Spector L. B. A phosphoenzyme intermediary in acetate kinase action. J Biol Chem. 1970 Dec 25;245(24):6739–6741. [PubMed] [Google Scholar]
- Anthony R. S., Spector L. B. Exchange reactions catalyzed by acetate kinase. J Biol Chem. 1971 Oct 25;246(20):6129–6135. [PubMed] [Google Scholar]
- Anthony R. S., Spector L. B. Phosphorylated acetate kinase. Its isolation and reactivity. J Biol Chem. 1972 Apr 10;247(7):2120–2125. [PubMed] [Google Scholar]
- Blättler W. A., Knowles J. R. Stereochemical course of phosphokinases. The use of adenosine [gamma-(S)-16O,17O,18O]triphosphate and the mechanistic consequences for the reactions catalyzed by glycerol kinase, hexokinase, pyruvate kinase, and acetate kinase. Biochemistry. 1979 Sep 4;18(18):3927–3933. doi: 10.1021/bi00585a013. [DOI] [PubMed] [Google Scholar]
- Bryant F. R., Benkovic S. J. Stereochemical course of the reaction catalyzed by 5'-nucleotide phosphodiesterase from snake venom. Biochemistry. 1979 Jun 26;18(13):2825–2828. doi: 10.1021/bi00580a022. [DOI] [PubMed] [Google Scholar]
- Burgers P. M., Eckstein F., Hunneman D. H. Stereochemistry of hydrolysis by snake venom phosphodiesterase. J Biol Chem. 1979 Aug 25;254(16):7476–7478. [PubMed] [Google Scholar]
- Dunn B. M., DiBello C., Anfinsen C. B. The pH dependence of the steady state kinetic parameters for staphylococcal nuclease-catalyzed hydrolysis of deoxythymidine-3'-phosphate-5'-p-nitrophenylphosphate in H 2 O and D 2 O. J Biol Chem. 1973 Jul 10;248(13):4769–4774. [PubMed] [Google Scholar]
- Griffith M. J., Nishimura J. S. Acetate kinase from Veillonella alcalescens. Regulation by succinate and substrates. J Biol Chem. 1979 Jul 25;254(14):6698–6702. [PubMed] [Google Scholar]
- Groth D. P., Young L. G. On the formation of an intermediate in the adenine phosphoribosyltransferase reaction. Biochem Biophys Res Commun. 1971 Apr 2;43(1):82–87. doi: 10.1016/s0006-291x(71)80089-x. [DOI] [PubMed] [Google Scholar]
- Jones S. R., Kindman L. A., Knowles J. R. Stereochemistry of phosphoryl group transfer using a chiral [16O, 17O, 18O] stereochemical course of alkaline phosphatase. Nature. 1978 Oct 12;275(5680):564–565. doi: 10.1038/275564a0. [DOI] [PubMed] [Google Scholar]
- MOURAD N., PARKS R. E., Jr NDP KINASE: DEMONSTRATION OF PHOSPHORYLATED ENZYME AS THE REACTIVE INTERMEDIATE. Biochem Biophys Res Commun. 1965 Apr 23;19:312–316. doi: 10.1016/0006-291x(65)90460-2. [DOI] [PubMed] [Google Scholar]
- ROSE I. A., GRUNBERG-MANAGO M., KOREY S. R., OCHOA S. Enzymatic phosphorylation of acetate. J Biol Chem. 1954 Dec;211(2):737–756. [PubMed] [Google Scholar]
- Satchell D. P., White G. F. Kinetic studies with acetate kinase. Biochim Biophys Acta. 1970 Aug 15;212(2):248–256. doi: 10.1016/0005-2744(70)90205-6. [DOI] [PubMed] [Google Scholar]
- Sheu K. F., Richard J. P., Frey P. A. Stereochemical courses of nucleotidyltransferase and phosphotransferase action. Uridine diphosphate glucose pyrophosphorylase, galactose-1-phosphate uridylyltransferase, adenylate kinase, and nucleoside diphosphate kinase. Biochemistry. 1979 Dec 11;18(25):5548–5556. doi: 10.1021/bi00592a004. [DOI] [PubMed] [Google Scholar]
- Skarstedt M. T., Silverstein E. Escherichia coli acetate kinase mechanism studied by net initial rate, equilibrium, and independent isotopic exchange kinetics. J Biol Chem. 1976 Nov 10;251(21):6775–6783. [PubMed] [Google Scholar]
- Solomon F., Rose I. A. Significance of ADP-ATP exchange for the hexokinase reaction mechanism. Arch Biochem Biophys. 1971 Nov;147(1):349–350. doi: 10.1016/0003-9861(71)90344-4. [DOI] [PubMed] [Google Scholar]
- Todhunter J. A., Purich D. L. Evidence for the formation of a gamma-phosphorylated glutamyl residue in the Escherichia coli acetate kinase reaction. Biochem Biophys Res Commun. 1974 Sep 9;60(1):273–280. doi: 10.1016/0006-291x(74)90201-0. [DOI] [PubMed] [Google Scholar]
- Todhunter J. A., Reichel K. B., Purich D. L. A kinetically important phosphoryl-enzyme intermediary in the intrinsic purine nucleoside-5'-diphosphokinase activity of Escherichia coli acetate kinase. Arch Biochem Biophys. 1976 May;174(1):120–128. doi: 10.1016/0003-9861(76)90330-1. [DOI] [PubMed] [Google Scholar]
- Victor J., Greenberg L. B., Sloan D. L. Studies of the kinetic mechanism of orotate phosphoribosyltransferase from yeast. J Biol Chem. 1979 Apr 25;254(8):2647–2655. [PubMed] [Google Scholar]
- Walsh C. T., Jr, Spector L. B. The glucose-glucose 6-phosphate exchange catalyzed by yeast hexokinase. Arch Biochem Biophys. 1971 Jul;145(1):1–5. doi: 10.1016/0003-9861(71)90002-6. [DOI] [PubMed] [Google Scholar]
- Webb B. C., Todhunter J. A., Purich D. L. Studies on the kinetic mechanism and the phosphoryl-enzyme compound of the Escherichia coli acetate kinase reaction. Arch Biochem Biophys. 1976 Mar;173(1):282–292. doi: 10.1016/0003-9861(76)90261-7. [DOI] [PubMed] [Google Scholar]