Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 May;77(5):2626–2630. doi: 10.1073/pnas.77.5.2626

Acetate kinase: a triple-displacement enzyme.

L B Spector
PMCID: PMC349455  PMID: 6248856

Abstract

Facts relating to the mechanism of phosphoryl transfer by acetate kinase (ATP:acetate phosphotransferase, EC 2.7.2.1) are reviewed. They point to the existence of at least one experimentally established phosphoenzyme (E-P) intermediate on the reaction pathway. Sterically, the phosphoryl transfer occurs with a net inversion of the configuration of the phosphorus atom. These facts are best in accord with a triple-displacement mode of action for acetate kinase, with two E-P intermediates and three steric inversions on phosphorus. It follows that a second E-P for acetate kinase must exist.

Full text

PDF
2626

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. M., Stenkamp R. E., McDonald R. C., Steitz T. A. A refined model of the sugar binding site of yeast hexokinase B. J Mol Biol. 1978 Aug 5;123(2):207–219. doi: 10.1016/0022-2836(78)90321-2. [DOI] [PubMed] [Google Scholar]
  2. Anthony R. S., Spector L. B. A phosphoenzyme intermediary in acetate kinase action. J Biol Chem. 1970 Dec 25;245(24):6739–6741. [PubMed] [Google Scholar]
  3. Anthony R. S., Spector L. B. Exchange reactions catalyzed by acetate kinase. J Biol Chem. 1971 Oct 25;246(20):6129–6135. [PubMed] [Google Scholar]
  4. Anthony R. S., Spector L. B. Phosphorylated acetate kinase. Its isolation and reactivity. J Biol Chem. 1972 Apr 10;247(7):2120–2125. [PubMed] [Google Scholar]
  5. Blättler W. A., Knowles J. R. Stereochemical course of phosphokinases. The use of adenosine [gamma-(S)-16O,17O,18O]triphosphate and the mechanistic consequences for the reactions catalyzed by glycerol kinase, hexokinase, pyruvate kinase, and acetate kinase. Biochemistry. 1979 Sep 4;18(18):3927–3933. doi: 10.1021/bi00585a013. [DOI] [PubMed] [Google Scholar]
  6. Bryant F. R., Benkovic S. J. Stereochemical course of the reaction catalyzed by 5'-nucleotide phosphodiesterase from snake venom. Biochemistry. 1979 Jun 26;18(13):2825–2828. doi: 10.1021/bi00580a022. [DOI] [PubMed] [Google Scholar]
  7. Burgers P. M., Eckstein F., Hunneman D. H. Stereochemistry of hydrolysis by snake venom phosphodiesterase. J Biol Chem. 1979 Aug 25;254(16):7476–7478. [PubMed] [Google Scholar]
  8. Dunn B. M., DiBello C., Anfinsen C. B. The pH dependence of the steady state kinetic parameters for staphylococcal nuclease-catalyzed hydrolysis of deoxythymidine-3'-phosphate-5'-p-nitrophenylphosphate in H 2 O and D 2 O. J Biol Chem. 1973 Jul 10;248(13):4769–4774. [PubMed] [Google Scholar]
  9. Griffith M. J., Nishimura J. S. Acetate kinase from Veillonella alcalescens. Regulation by succinate and substrates. J Biol Chem. 1979 Jul 25;254(14):6698–6702. [PubMed] [Google Scholar]
  10. Groth D. P., Young L. G. On the formation of an intermediate in the adenine phosphoribosyltransferase reaction. Biochem Biophys Res Commun. 1971 Apr 2;43(1):82–87. doi: 10.1016/s0006-291x(71)80089-x. [DOI] [PubMed] [Google Scholar]
  11. Jones S. R., Kindman L. A., Knowles J. R. Stereochemistry of phosphoryl group transfer using a chiral [16O, 17O, 18O] stereochemical course of alkaline phosphatase. Nature. 1978 Oct 12;275(5680):564–565. doi: 10.1038/275564a0. [DOI] [PubMed] [Google Scholar]
  12. MOURAD N., PARKS R. E., Jr NDP KINASE: DEMONSTRATION OF PHOSPHORYLATED ENZYME AS THE REACTIVE INTERMEDIATE. Biochem Biophys Res Commun. 1965 Apr 23;19:312–316. doi: 10.1016/0006-291x(65)90460-2. [DOI] [PubMed] [Google Scholar]
  13. ROSE I. A., GRUNBERG-MANAGO M., KOREY S. R., OCHOA S. Enzymatic phosphorylation of acetate. J Biol Chem. 1954 Dec;211(2):737–756. [PubMed] [Google Scholar]
  14. Satchell D. P., White G. F. Kinetic studies with acetate kinase. Biochim Biophys Acta. 1970 Aug 15;212(2):248–256. doi: 10.1016/0005-2744(70)90205-6. [DOI] [PubMed] [Google Scholar]
  15. Sheu K. F., Richard J. P., Frey P. A. Stereochemical courses of nucleotidyltransferase and phosphotransferase action. Uridine diphosphate glucose pyrophosphorylase, galactose-1-phosphate uridylyltransferase, adenylate kinase, and nucleoside diphosphate kinase. Biochemistry. 1979 Dec 11;18(25):5548–5556. doi: 10.1021/bi00592a004. [DOI] [PubMed] [Google Scholar]
  16. Skarstedt M. T., Silverstein E. Escherichia coli acetate kinase mechanism studied by net initial rate, equilibrium, and independent isotopic exchange kinetics. J Biol Chem. 1976 Nov 10;251(21):6775–6783. [PubMed] [Google Scholar]
  17. Solomon F., Rose I. A. Significance of ADP-ATP exchange for the hexokinase reaction mechanism. Arch Biochem Biophys. 1971 Nov;147(1):349–350. doi: 10.1016/0003-9861(71)90344-4. [DOI] [PubMed] [Google Scholar]
  18. Todhunter J. A., Purich D. L. Evidence for the formation of a gamma-phosphorylated glutamyl residue in the Escherichia coli acetate kinase reaction. Biochem Biophys Res Commun. 1974 Sep 9;60(1):273–280. doi: 10.1016/0006-291x(74)90201-0. [DOI] [PubMed] [Google Scholar]
  19. Todhunter J. A., Reichel K. B., Purich D. L. A kinetically important phosphoryl-enzyme intermediary in the intrinsic purine nucleoside-5'-diphosphokinase activity of Escherichia coli acetate kinase. Arch Biochem Biophys. 1976 May;174(1):120–128. doi: 10.1016/0003-9861(76)90330-1. [DOI] [PubMed] [Google Scholar]
  20. Victor J., Greenberg L. B., Sloan D. L. Studies of the kinetic mechanism of orotate phosphoribosyltransferase from yeast. J Biol Chem. 1979 Apr 25;254(8):2647–2655. [PubMed] [Google Scholar]
  21. Walsh C. T., Jr, Spector L. B. The glucose-glucose 6-phosphate exchange catalyzed by yeast hexokinase. Arch Biochem Biophys. 1971 Jul;145(1):1–5. doi: 10.1016/0003-9861(71)90002-6. [DOI] [PubMed] [Google Scholar]
  22. Webb B. C., Todhunter J. A., Purich D. L. Studies on the kinetic mechanism and the phosphoryl-enzyme compound of the Escherichia coli acetate kinase reaction. Arch Biochem Biophys. 1976 Mar;173(1):282–292. doi: 10.1016/0003-9861(76)90261-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES