Abstract
The effects of opioids on transepithelial potential difference and short-circuit current across guinea pig ileum stripped of one muscle layer were measured in vitro in Ussing chambers. Opioid peptides such as [DAla2, DLeu5]enkephalin and [DAla2, DMet5]enkephalin, which are primarily agonists at delta-opiate receptors, were able to reduce transepithelial potential difference and short-circuit current at concentrations as low as 1 nM. The narcotic drug etorphine was also very potent in reducing short-circuit current, but fentanyl and morphine, which are primarily agonists at mu-opiate receptors, were almost completely ineffective. Ketocyclazocine was relatively ineffective, and beta-endorphin had intermediate potency. All opioid effects could be reversed by the opiate antagonist naloxone. Somatostatin also reduced short-circuit current, but its effect was not reduced by naloxone. Chloride flux measurements indicated that the effect of etorphine on short-circuit current is associated with an enhancement of active Cl- absorption. The relative effects of opioids in this system suggest that their actions are being mediated by a specific delta-opiate receptor. In contrast, opioid effects on guinea pig intestinal smooth muscle seem to be primarily mediated by a mu-opiate receptor.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alumets J., Håkanson R., Sundler F., Chang K. J. Leu-enkephalin-like material in nerves and enterochromaffin cells in the gut. An immunohistochemical study. Histochemistry. 1978 Jul 12;56(3-4):187–196. doi: 10.1007/BF00495979. [DOI] [PubMed] [Google Scholar]
- Bass P., Kennedy J. A., Wiley J. N., Villarreal J., Butler D. E. CI-750, A novel antidiarrheal agent. J Pharmacol Exp Ther. 1973 Jul;186(1):183–198. [PubMed] [Google Scholar]
- Bolton J. E., Field M. Ca ionophore-stimulated ion secretion in rabbit ileal mucosa: relation to actions of cyclic 3',5'-AMP and carbamylcholine. J Membr Biol. 1977 Jun 30;35(2):159–173. doi: 10.1007/BF01869947. [DOI] [PubMed] [Google Scholar]
- Burks T. F., Grubb M. N. Sites of acute morphine tolerance in intestine. J Pharmacol Exp Ther. 1974 Dec;191(3):518–526. [PubMed] [Google Scholar]
- Burks T. F., Long J. P. Release of intestinal 5-hydroxytryptamine by morphine and related agents. J Pharmacol Exp Ther. 1967 May;156(2):267–276. [PubMed] [Google Scholar]
- Burks T. F., Long J. P. Responses of isolated dog small intestine to analgesic agents. J Pharmacol Exp Ther. 1967 Nov;158(2):264–271. [PubMed] [Google Scholar]
- Chang K. J., Cuatrecasas P. Multiple opiate receptors. Enkephalins and morphine bind to receptors of different specificity. J Biol Chem. 1979 Apr 25;254(8):2610–2618. [PubMed] [Google Scholar]
- Chang K. J., Miller R. J., Cuatrecasas P. Interaction of enkephalin with opiate receptors in intact cultured cells. Mol Pharmacol. 1978 Nov;14(6):961–970. [PubMed] [Google Scholar]
- Field M., Fromm D., McColl I. Ion transport in rabbit ileal mucosa. I. Na and Cl fluxes and short-circuit current. Am J Physiol. 1971 May;220(5):1388–1396. doi: 10.1152/ajplegacy.1971.220.5.1388. [DOI] [PubMed] [Google Scholar]
- Field M., McColl I. Ion transport in rabbit ileal mucosa. 3. Effects of catecholamines. Am J Physiol. 1973 Oct;225(4):852–857. doi: 10.1152/ajplegacy.1973.225.4.852. [DOI] [PubMed] [Google Scholar]
- Furness J. B., Costa M. Types of nerves in the enteric nervous system. Neuroscience. 1980;5(1):1–20. doi: 10.1016/0306-4522(80)90067-6. [DOI] [PubMed] [Google Scholar]
- Hutchinson M., Kosterlitz H. W., Leslie F. M., Waterfield A. A. Assessment in the guinea-pig ileum and mouse vas deferens of benzomorphans which have strong antinociceptive activity but do not substitute for morphine in the dependent monkey. Br J Pharmacol. 1975 Dec;55(4):541–546. doi: 10.1111/j.1476-5381.1975.tb07430.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KOSTERLITZ H. W., ROBINSON J. A. Inhibition of the peristaltic reflex of the isolated guinea-pig ileum. J Physiol. 1957 Apr 30;136(2):249–262. doi: 10.1113/jphysiol.1957.sp005757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karim S. M., Adaikan P. G. The effect of loperamide on prostaglandin induced diarrhoea in rat and man. Prostaglandins. 1977 Feb;13(2):321–331. doi: 10.1016/0090-6980(77)90011-9. [DOI] [PubMed] [Google Scholar]
- Linnoila R. I., DiAugustine R. P., Miller R. J., Chang K. J., Cuatrecasas P. An immunohistochemical and radioimmunological study of the distribution of [met5]- and [leu5]-enkephalin in the gastrointestinal tract. Neuroscience. 1978;3(12):1187–1196. doi: 10.1016/0306-4522(78)90138-0. [DOI] [PubMed] [Google Scholar]
- Lord J. A., Waterfield A. A., Hughes J., Kosterlitz H. W. Endogenous opioid peptides: multiple agonists and receptors. Nature. 1977 Jun 9;267(5611):495–499. doi: 10.1038/267495a0. [DOI] [PubMed] [Google Scholar]
- Martin W. R., Eades C. G., Thompson J. A., Huppler R. E., Gilbert P. E. The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther. 1976 Jun;197(3):517–532. [PubMed] [Google Scholar]
- Miller R. J., Chang K. J., Cuatrecasas P. The metabolic stability of the enkephalins. Biochem Biophys Res Commun. 1977 Feb 21;74(4):1311–1317. doi: 10.1016/0006-291x(77)90585-x. [DOI] [PubMed] [Google Scholar]
- Miller R. J., Cuatrecasas P. Enkephalins and endorphins. Vitam Horm. 1978;36:297–382. doi: 10.1016/s0083-6729(08)60987-5. [DOI] [PubMed] [Google Scholar]
- Stahl K. D., van Bever W., Janssen P., Simon E. J. Receptor affinity and pharmacological potency of a series of narcotic analgesic, anti-diarrheal and neuroleptic drugs. Eur J Pharmacol. 1977 Dec 1;46(3):199–205. doi: 10.1016/0014-2999(77)90334-x. [DOI] [PubMed] [Google Scholar]
- Waterfield A. A., Smokcum R. W., Hughes J., Kosterlitz H. W., Henderson G. In vitro pharmacology of the opioid peptides, enkephalins and endorphins. Eur J Pharmacol. 1977 May 15;43(2):107–116. doi: 10.1016/0014-2999(77)90123-6. [DOI] [PubMed] [Google Scholar]