Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 May;77(5):2791–2795. doi: 10.1073/pnas.77.5.2791

Convergence and minimal mutation criteria for evaluating early events in tRNA evolution.

R J Cedergren, B LaRue, D Sankoff, G Lapalme, H Grosjean
PMCID: PMC349490  PMID: 6930666

Abstract

The convergence of ancestral sequences independently constructed from different branches of a phylogenetic tree can be used as a test of homology of data sequences. This criterion has shown that all phenylalanine tRNAs are related to a common ancestor, whereas eukaryotic and prokaryotic tyrosine tRNAs may have independent origins. All glycine tRNAs share a common ancestor. The glycine tRNA family splits according to the purine or pyrimidine nature of the first anticodon base prior to the divergence of eukaryotes and prokaryotes. The structural similarity between some prokaryotic glycine and and valine tRNAs is the result of their derivation from a common ancestor that existed previous to the divergence of the different glycine tRNAs. These results support models of genetic code evolution involving the incremental elaboration of earlier, simpler codes.

Full text

PDF
2791

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barricelli N. A. On the origin and evolution of the genetic code. I. Wobbling and its potential significance. J Theor Biol. 1977 Jul 7;67(1):85–109. doi: 10.1016/0022-5193(77)90186-2. [DOI] [PubMed] [Google Scholar]
  2. Bauer K. Protamines, histones and the genetic code. New evidence for code evaluations. Int J Pept Protein Res. 1976;8(1):13–19. doi: 10.1111/j.1399-3011.1976.tb02475.x. [DOI] [PubMed] [Google Scholar]
  3. Bergquist P. L., Burns D. J., Plinston C. A. Participation of redundant transfer ribonucleic acids from yeast in protein synthesis. Biochemistry. 1968 May;7(5):1751–1761. doi: 10.1021/bi00845a020. [DOI] [PubMed] [Google Scholar]
  4. Cedergren R. J., Cordeau J. R., Robillard P. On the phylogeny of t-RNA's. J Theor Biol. 1972 Nov;37(2):209–220. doi: 10.1016/0022-5193(72)90017-3. [DOI] [PubMed] [Google Scholar]
  5. Clarke L., Carbon J. The nucleotide sequence of a threonine transfer ribonucleic acid from Escherichia coli. J Biol Chem. 1974 Nov 10;249(21):6874–6885. [PubMed] [Google Scholar]
  6. Crick F. H. Codon--anticodon pairing: the wobble hypothesis. J Mol Biol. 1966 Aug;19(2):548–555. doi: 10.1016/s0022-2836(66)80022-0. [DOI] [PubMed] [Google Scholar]
  7. Crick F. H. The origin of the genetic code. J Mol Biol. 1968 Dec;38(3):367–379. doi: 10.1016/0022-2836(68)90392-6. [DOI] [PubMed] [Google Scholar]
  8. Fitch W. M., Margoliash E. Construction of phylogenetic trees. Science. 1967 Jan 20;155(3760):279–284. doi: 10.1126/science.155.3760.279. [DOI] [PubMed] [Google Scholar]
  9. Holmquist R., Jukes T. H., Pangburn S. Evolution of transfer RNA. J Mol Biol. 1973 Jun 25;78(1):91–116. doi: 10.1016/0022-2836(73)90430-0. [DOI] [PubMed] [Google Scholar]
  10. Ishigami M., Nagano K., Tonotsuka N. The origin of the protein synthesis mechanism. Biosystems. 1977 Dec;9(4):229–243. doi: 10.1016/0303-2647(77)90007-7. [DOI] [PubMed] [Google Scholar]
  11. Jacobson K. B. Reaction of aminoacyl-tRNA synthetases with heterologous tRNA's. Prog Nucleic Acid Res Mol Biol. 1971;11:461–488. doi: 10.1016/s0079-6603(08)60335-9. [DOI] [PubMed] [Google Scholar]
  12. Jukes T. H. Possibilities for the evolution of the genetic code from a preceding form. Nature. 1973 Nov 2;246(5427):22–26. doi: 10.1038/246022a0. [DOI] [PubMed] [Google Scholar]
  13. Mitra S. K., Lustig F., Akesson B., Axberg T., Elias P., Lagerkvist U. Relative efficiency of anticodons in reading the valine codons during protein synthesis in vitro. J Biol Chem. 1979 Jul 25;254(14):6397–6401. [PubMed] [Google Scholar]
  14. Mitra S. K., Lustig F., Akesson B., Lagerkvist U. Codon-acticodon recognition in the valine codon family. J Biol Chem. 1977 Jan 25;252(2):471–478. [PubMed] [Google Scholar]
  15. Parker J., Pollard J. W., Friesen J. D., Stanners C. P. Stuttering: high-level mistranslation in animal and bacterial cells. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1091–1095. doi: 10.1073/pnas.75.3.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reeve A. E., Chih R., Huang C. A method for the enzymatic synthesis and purification of [alpha-32P] nucleoside triphosphates. Nucleic Acids Res. 1979 Jan;6(1):81–90. doi: 10.1093/nar/6.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Valenzuela P., Venegas A., Weinberg F., Bishop R., Rutter W. J. Structure of yeast phenylalanine-tRNA genes: an intervening DNA segment within the region coding for the tRNA. Proc Natl Acad Sci U S A. 1978 Jan;75(1):190–194. doi: 10.1073/pnas.75.1.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wetzel R. Aminoacyl-tRNA synthetase families and their significance to the origin of the genetic code. Orig Life. 1978 Sep;9(1):39–50. doi: 10.1007/BF00929712. [DOI] [PubMed] [Google Scholar]
  19. Wong J. T. The evolution of a universal genetic code. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2336–2340. doi: 10.1073/pnas.73.7.2336. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES