Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jun;77(6):3181–3185. doi: 10.1073/pnas.77.6.3181

Semisynthesis and biological activity of porcine [LeuB24]insulin and [LeuB25]insulin.

H Tager, N Thomas, R Assoian, A Rubenstein, M Saekow, J Olefsky, E T Kaiser
PMCID: PMC349578  PMID: 6997872

Abstract

Two analogs of porcine insulin with substitutions of leucine for phenylalanine in the COOH-terminal region of the insulin B chain have been prepared by a combination of solid-phase synthesis and semisynthesis. Solid-phase synthesis of the substituted octapeptides B23-B30 bearing the trifluoracetyl group on lysine-B29, enzymatic coupling of the octapeptides to bis(tertiary-butyloxycarbonyl)desoctapeptide insulin by trypsin, and deprotection of the corresponding adducts in formic acid and piperidine resulted in two insulin derivatives, one with leucine at position B24 and the other with leucine at position B25. These analogs had only about 10% and 1%, respectively, of the activity of porcine insulin in competing for the binding of [125I]iodoinsulin to both rat adipocytes and human IM-9 lymphocytes. The relative potencies of the analogs in stimulating glucose oxidation by rat adipocytes decreased in the order porcine insulin > [LeuB24]insulin > [LeuB25]insulin. However, at high concentrations both analogs had full agonists activity. Experiments in which the semisynthetic insulins were mixed with the native hormone showed that [LeuB24]insulin, but not [LeuB25]insulin, was an active antagonist of insulin action. These results suggest that the antagonistic activity of a human insulin variant having leucine at position B24 or B25 can be assigned to the molecule with the sequence Gly-Leu-Phe-Tyr (residues B23-B26) in its active site.

Full text

PDF
3181

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anfinsen C. B., Ontjes D., Ohno M., Corley L., Eastlake A. The synthesis of protected peptide fragments of a staphylococcal nuclease. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1806–1811. doi: 10.1073/pnas.58.4.1806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  3. De Meyts P., Van Obberghen E., Roth J. Mapping of the residues responsible for the negative cooperativity of the receptor-binding region of insulin. Nature. 1978 Jun 15;273(5663):504–509. doi: 10.1038/273504a0. [DOI] [PubMed] [Google Scholar]
  4. Gavin J. R., 3rd, Gorden P., Roth J., Archer J. A., Buell D. N. Characteristics of the human lymphocyte insulin receptor. J Biol Chem. 1973 Mar 25;248(6):2202–2207. [PubMed] [Google Scholar]
  5. Gisin B. F., Merrifield R. B. Carboxyl-catalyzed intramolecular aminolysis. A side reaction in solid-phase peptide synthesis. J Am Chem Soc. 1972 May 3;94(9):3102–3106. doi: 10.1021/ja00764a036. [DOI] [PubMed] [Google Scholar]
  6. Given B. D., Mako M. E., Tager H. S., Baldwin D., Markese J., Rubenstein A. H., Olefsky J., Kobayashi M., Kolterman O., Poucher R. Diabetes due to secretion of an abnormal insulin. N Engl J Med. 1980 Jan 17;302(3):129–135. doi: 10.1056/NEJM198001173020301. [DOI] [PubMed] [Google Scholar]
  7. Gliemann J., Osterlind K., Vinten J., Gammeltoft S. A procedure for measurement of distribution spaces in isolated fat cells. Biochim Biophys Acta. 1972 Nov 24;286(1):1–9. doi: 10.1016/0304-4165(72)90082-7. [DOI] [PubMed] [Google Scholar]
  8. Kaiser E., Colescott R. L., Bossinger C. D., Cook P. I. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem. 1970 Apr;34(2):595–598. doi: 10.1016/0003-2697(70)90146-6. [DOI] [PubMed] [Google Scholar]
  9. Levy D., Carpenter F. H. The synthesis of triaminoacyl-insulins and the use of the t-butyloxycarbonyl group for the reversible blocking of the amino groups of insulin. Biochemistry. 1967 Nov;6(11):3559–3568. doi: 10.1021/bi00863a030. [DOI] [PubMed] [Google Scholar]
  10. Olefsky J. M. Effects of fasting on insulin binding, glucose transport, and glucose oxidation in isolated rat adipocytes: relationships between insulin receptors and insulin action. J Clin Invest. 1976 Dec;58(6):1450–1460. doi: 10.1172/JCI108601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. REISFELD R. A., LEWIS U. J., WILLIAMS D. E. Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature. 1962 Jul 21;195:281–283. doi: 10.1038/195281a0. [DOI] [PubMed] [Google Scholar]
  12. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
  13. Tager H., Given B., Baldwin D., Mako M., Markese J., Rubenstein A., Olefsky J., Kobayashi M., Kolterman O., Poucher R. A structurally abnormal insulin causing human diabetes. Nature. 1979 Sep 13;281(5727):122–125. doi: 10.1038/281122a0. [DOI] [PubMed] [Google Scholar]
  14. Weitzel G., Bauer F. U., Eisele K. Further studies on the three-step-increase in activity due to the aromatic amino acids B24-26 (-Phe-Phe-Tyr-). Hoppe Seylers Z Physiol Chem. 1976 Feb;357(2):187–200. doi: 10.1515/bchm2.1976.357.1.187. [DOI] [PubMed] [Google Scholar]
  15. Weitzel G., Eisele K., Schulz V., Stock W. Structure and activity of insulin. XII. Further studies on biologically acitve synthetic fragments of the B-chain. Hoppe Seylers Z Physiol Chem. 1973 Mar;354(3):321–330. doi: 10.1515/bchm2.1973.354.1.321. [DOI] [PubMed] [Google Scholar]
  16. Wood S. P., Blundell T. L., Wollmer A., Lazarus N. R., Neville R. W. The relation of conformation and association of insulin to receptor binding; x-ray and circular-dichroism studies on bovine and hystricomorph insulins. Eur J Biochem. 1975 Jul 15;55(3):531–542. doi: 10.1111/j.1432-1033.1975.tb02190.x. [DOI] [PubMed] [Google Scholar]
  17. Yamashiro D., Li C. H. Synthesis of a pentekontapeptide with high lipolytic activity corresponding to the carboxyl-terminal fifty amino acids of ovine beta-lipotropin. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4945–4949. doi: 10.1073/pnas.71.12.4945. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES