Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jun;77(6):3264–3268. doi: 10.1073/pnas.77.6.3264

Phosphorylation and dephosphorylation of spectrin from human erythrocyte ghosts under physiological conditions: autocatalysis rather than reaction with separate kinase and phosphatase.

B A Imhof, H J Acha-Orbea, T A Libermann, B F Reber, J H Lanz, K H Winterhalter, W Birchmeier
PMCID: PMC349595  PMID: 6932020

Abstract

The mechanism of phosphosylation and dephosphorylation of spectrin from human erythrocyte membranes has been examined under closely physiological conditions. The results support the hypothesis that spectrin is an autophosphorylating and dephosphorylating system. (i) Extraction from ghosts of up to 85% of the kinase (casein kinase) suggested to catalyze the reaction [see Fairbanks, G., Avruch, J., Dino, E. J. & Patel, V. P. (1978) J. Supramol. Struct. 9, 97--112] only slightly reduced spectrin component 2 phosphorylation and did not affect ATP-induced changes in the ghosts' shapes. (ii) A spectrin--actin complex isolated from endocytotic inside-out vesicles under hyperteonic conditions contained virtually no casein kinase activity and still exhibited a largely intact phosphorylation machinery. (iii) Photoaffinity labeling experiments indicated that spectrin component 2 fulfills the necessary prerequisite of the hypothesis--i.e., it contains its own ATP-binding site. (iv) Under various conditions, spectrin phosphorylation and dephospohrylation seem to be tightly coupled. The implications of these findings for the understanding of spectrin function and the maintenance of erythrocyte shape are discussed.

Full text

PDF
3264

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. M. Structural studies on human spectrin. Comparison of subunits and fragmentation of native spectrin. J Biol Chem. 1979 Feb 10;254(3):939–944. [PubMed] [Google Scholar]
  2. Avruch J., Fairbanks G., Crapo L. M. Regulation of plasma membrane protein phosphorylation in two mammalian cell types. J Cell Physiol. 1976 Dec;89(4):815–826. doi: 10.1002/jcp.1040890449. [DOI] [PubMed] [Google Scholar]
  3. Avruch J., Fairbanks G. Phosphorylation of endogenous substrates by erythrocyte membrane protein kinases. I. A monovalent cation-stimulated reaction. Biochemistry. 1974 Dec 31;13(27):5507–5514. doi: 10.1021/bi00724a009. [DOI] [PubMed] [Google Scholar]
  4. Bennett V., Stenbuck P. J. Identification and partial purification of ankyrin, the high affinity membrane attachment site for human erythrocyte spectrin. J Biol Chem. 1979 Apr 10;254(7):2533–2541. [PubMed] [Google Scholar]
  5. Birchmeier W., Lanz J. H., Winterhalter K. H., Conrad M. J. ATP-induced endocytosis in human erythrocyte ghosts. Characterization of the process and isolation of the endocytosed vesicles. J Biol Chem. 1979 Sep 25;254(18):9298–9304. [PubMed] [Google Scholar]
  6. Birchmeier W., Singer S. J. Muscle G-actin is an inhibitor of ATP-induced erythrocyte ghost shape changes and endocytosis. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1354–1360. doi: 10.1016/s0006-291x(77)80128-9. [DOI] [PubMed] [Google Scholar]
  7. Birchmeier W., Singer S. J. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. II. The role of ATP. J Cell Biol. 1977 Jun;73(3):647–659. doi: 10.1083/jcb.73.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chiu Y. S., Tao M. Autophosphorylation of rabbit skeletal muscle cyclic AMP-dependent protein kinase I catalytic subunit. J Biol Chem. 1978 Oct 25;253(20):7145–7148. [PubMed] [Google Scholar]
  9. Cohen C. M., Jackson P. L., Branton D. Actin--membrane interactions: association of G-actin with the red cell membrane. J Supramol Struct. 1978;9(1):113–124. doi: 10.1002/jss.400090111. [DOI] [PubMed] [Google Scholar]
  10. Fairbanks G., Avruch J., Dino J. E., Patel V. P. Phosphorylation and dephosphorylation of spectrin. J Supramol Struct. 1978;9(1):97–112. doi: 10.1002/jss.400090110. [DOI] [PubMed] [Google Scholar]
  11. Fairbanks G., Avruch J. Phosphorylation of endogenous substrates by erythrocyte membrane protein kinases. II. Cyclic adenosine monophosphate-stimulated reactions. Biochemistry. 1974 Dec 31;13(27):5514–5521. doi: 10.1021/bi00724a010. [DOI] [PubMed] [Google Scholar]
  12. Graham C., Avruch J., Fairbanks G. Phosphoprotein phosphatase of the human erythrocyte. Biochem Biophys Res Commun. 1976 Sep 20;72(2):701–708. doi: 10.1016/s0006-291x(76)80096-4. [DOI] [PubMed] [Google Scholar]
  13. Haley B. E., Hoffman J. F. Interactions of a photo-affinity ATP analog with cation-stimulated adenosine triphosphatases of human red cell membranes. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3367–3371. doi: 10.1073/pnas.71.9.3367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hosey M. M., Tao M. Phosphorylation of rabbit and human erythrocyte membranes by soluble adenosine 3':5'-monophosphate-dependent and -independent protein kinases. J Biol Chem. 1977 Jan 10;252(1):102–109. [PubMed] [Google Scholar]
  15. Hosey M. M., Tao M. Selective phosphorylation of erythrocyte membrane proteins by the solubilized membrane protein kinases. Biochemistry. 1977 Oct 18;16(21):4578–4583. doi: 10.1021/bi00640a007. [DOI] [PubMed] [Google Scholar]
  16. Ikeda Y., Steiner M. Phosphylation and protein kinase activity of platelet tubulin. J Biol Chem. 1979 Jan 10;254(1):66–74. [PubMed] [Google Scholar]
  17. Lymn R. W., Taylor E. W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry. 1971 Dec 7;10(25):4617–4624. doi: 10.1021/bi00801a004. [DOI] [PubMed] [Google Scholar]
  18. Marchesi V. T. Isolation of spectrin from erythrocyte membranes. Methods Enzymol. 1974;32:275–277. doi: 10.1016/0076-6879(74)32028-9. [DOI] [PubMed] [Google Scholar]
  19. Nicolson G. L., Marchesi V. T., Singer S. J. The localization of spectrin on the inner surface of human red blood cell membranes by ferritin-conjugated antibodies. J Cell Biol. 1971 Oct;51(1):265–272. doi: 10.1083/jcb.51.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pinder J. C., Bray D., Gratzer W. B. Control of interaction of spectrin and actin by phosphorylation. Nature. 1977 Dec 22;270(5639):752–754. doi: 10.1038/270752a0. [DOI] [PubMed] [Google Scholar]
  21. Rosen O. M., Erlichman J. Reversible autophosphorylation of a cyclic 3':5'-AMP-dependent protein kinase from bovine cardiac muscle. J Biol Chem. 1975 Oct 10;250(19):7788–7794. [PubMed] [Google Scholar]
  22. Schechter N. M., Sharp M., Reynolds J. A., Tanford C. Erythrocyte spectrin. Purification in deoxycholate and preliminary characterization. Biochemistry. 1976 May 4;15(9):1897–1904. doi: 10.1021/bi00654a016. [DOI] [PubMed] [Google Scholar]
  23. Sheetz M. P. DNase-I-dependent dissociation of erythrocyte cytoskeletons. J Cell Biol. 1979 Apr;81(1):266–270. doi: 10.1083/jcb.81.1.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sheetz M. P., Painter R. G., Singer S. J. Relationships of the spectrin complex of human erythrocyte membranes to the actomyosins of muscle cells. Biochemistry. 1976 Oct 5;15(20):4486–4492. doi: 10.1021/bi00665a024. [DOI] [PubMed] [Google Scholar]
  25. Shin B. C., Carraway K. L. Association of glyceraldehyde 3-phosphate dehydrogenase with the human erythrocyte membrane. Effect of detergents, trypsin, and adenosine triphosphate. J Biol Chem. 1973 Feb 25;248(4):1436–1444. [PubMed] [Google Scholar]
  26. Sperling J., Havron A. Photochemical cross-linking of neighboring residues in protein-nucleic acid complexes: rnase and pyrimidine nucleotide inhibitors. Biochemistry. 1976 Apr 6;15(7):1489–1495. doi: 10.1021/bi00652a020. [DOI] [PubMed] [Google Scholar]
  27. Tilney L. G., Detmers P. Actin in erythrocyte ghosts and its association with spectrin. Evidence for a nonfilamentous form of these two molecules in situ. J Cell Biol. 1975 Sep;66(3):508–520. doi: 10.1083/jcb.66.3.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ungewickell E., Bennett P. M., Calvert R., Ohanian V., Gratzer W. B. In vitro formation of a complex between cytoskeletal proteins of the human erythrocyte. Nature. 1979 Aug 30;280(5725):811–814. doi: 10.1038/280811a0. [DOI] [PubMed] [Google Scholar]
  29. Wolfe L. C., Lux S. E. Membrane protein phosphorylation of intact normal and hereditary spherocytic erythrocytes. J Biol Chem. 1978 May 10;253(9):3336–3342. [PubMed] [Google Scholar]
  30. Wyatt J. L., Greenquist A. C., Shohet S. B. Analyses of phosphorylated tryptic peptide of spectrin from human erythrocyte membrane. Biochem Biophys Res Commun. 1977 Dec 21;79(4):1279–1285. doi: 10.1016/0006-291x(77)91144-5. [DOI] [PubMed] [Google Scholar]
  31. Yue V. T., Schimmel P. R. Direct and specific photochemical cross-linking of adenosine 5'-triphosphate to an aminoacyl-tRNA synthetase. Biochemistry. 1977 Oct 18;16(21):4678–4684. doi: 10.1021/bi00640a023. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES