Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2013 Nov 25.
Published in final edited form as: Chem Commun (Camb). 2012 Oct 15;48(91):11256–11258. doi: 10.1039/c2cc36176k

Copper-Catalyzed Ortho-Acylation of Phenols with Aryl Aldehydes and Its Application in One-Step Preparation of Xanthones

Jun Hu a, Enoch A Adogla a, Yong Ju b, Daping Fan c, Qian Wang a,
PMCID: PMC3496182  NIHMSID: NIHMS417639  PMID: 23069775

Abstract

In the presence of triphenylphosphine, copper (II) chloride can catalyze an intermolecular ortho-acylation reaction of phenols with aryl aldehydes. The reaction proceeds smoothly with a wide range of starting materials, and furthermore, it can be used to synthesize xanthone derivatives in a single step with high-yields.


Direct acylation of the aromatic rings of phenols is an important transformation in organic synthesis since phenols are one of the most abundant aromatic compounds in nature and industry.1 Two major synthetic pathways can be followed in this transformation, namely, the well-known Friedel-Crafts reaction,2 and the transition-metal-catalyzed C-H activation pathway.3 However, classical Friedel-Crafts reactions often suffer from the harsh reaction condition and usage of air/water sensitive Lewis acid.4 While transition-metal-catalyzed C-H activation can convert carbon-hydrogen bond into carbon-oxygen,5 carbon-nitrogen,6 carbon-halide,7 carbon-sulfur8 or carbon-carbon bonds,9 till now, there is only one report about the acylation reaction of unprotected phenols.10 In that work, Miura and co-workers prepared 2-benzoyl-1-naphthol as a control experiment when they synthesized benzofuran-2(3H)-ones; however, no in-depth investigation was reported.

In the process of synthesizing a natural product, SsnB (Sparstolonin B, a xanthone derivative isolated from a Chinese herb showing effective anti-inflammatory activity),11 an effective ortho-acylation of substituted phenol and a facile protocol to form the xanthone ring are needed. Herein, we established a versatile synthetic method in-depth to achieve ortho-acylation of phenols firstly, and its appliction in synthesizing different xanthone derivatives. Xanthones constitute the core of natural and biologically active family of compounds present in higher plants and microorganisms,12 as well as the secondary metabolites found in higher plant families and lichens.13 They exhibit diverse physicochemical and pharmacological properties, such as antitumoral, antibacterial and antiinflammatory.14

To investigate the optimized reaction protocol, 3-methoxybenzaldehyde (1a) and 4-methoxyphenol (2a) were refluxed in toluene for 24 h in the presence of 5 mol% Pd(OAc)2, 7.5 mol% triphenylphosphine and 2.2 equiv K2CO3, and the product (3aa) was obtained in 77% yield. With this promising result, a systematic screening of catalysts, ligands, and bases was carried out and the results summarized in Table S1. Based on the results of Table S1, we chose 1 mmol aldehyde, 1.3 mmol phenol in toluene at 110 °C in the presence of 5 mol% of CuCl2, 7.5 mol% PPh3 and K3PO4 (2.2 equiv.) as the standard reaction condition.

We next explored the reaction scope with various phenols and aryl aldehydes, and seventeen ortho-acylation products were synthesized (Table 1). The results showed that regardless of the substitution of aryl aldehydes, electron withdrawing or donating, all compounds furnished the desired ortho-acylation products in almost similar yields when reacted with the same phenol (70–91% entries 1–7; 63–94% entries 8–12; 42–78% entries 13–16); even 4-nitrobenzaldehyde, the corresponding product 3gb was obtained with 70% yield (entry 12). However, the substituted group of phenols played a more important role compared with that of aryl aldehyde. The stronger electron-donating group phenols possessed, the more effective the acylation reactions were. For example, the methoxy and isopropyl substituted phenols (2a and 2b) offered higher yields than unsubstituted phenol (2c); conversely with electro-deficient 4-nitrophenol (2e), no reaction was detected (entry 18). When 4-iodophenol was used, cross-coupling reaction between iodine and hydroxyl was observed besides the acylation reaction (entry 17).15 Additionally, aliphatic aldehydes were ineffective to react with phenols (data not shown).

Table 1.

Ortho-acylation of phenols with aryl aldehydes a

graphic file with name nihms417639t1.jpg

entry R1 R2 product Yield (%) b, c
1 1a 3-OCH3 2a OCH3 3aa 91(79)
2 1b 4-CH3 2a OCH3 3ba 70 (60)
3 1c H 2a OCH3 3ca 79 (64)
4 1d 3-Cl 2a OCH3 3da 83 (70)
5 1e 4-F 2a OCH3 3ea 84 (73)
7 1f 2,6-OCH3 2a OCH3 3fa 77 (65)
8 1a 3-OCH3 2b i-Pr 3ab 94 (82)
9 1b 4-CH3 2b i-Pr 3bb 73 (60)
10 1c H 2b i-Pr 3cb 63 (48)
11 1d 3-Cl 2b i-Pr 3db 92 (79)
12 1g 4-NO2 2b i-Pr 3gb 70 (58)
13 1a 3-OCH3 2c H 3ac 56 (47)
14 1b 4-CH3 2c H 3bc 64 (50)
15 1d 3-Cl 2c H 3dc 78 (67)
16 1g 4-NO2 2c H 3gc 42 (31)
17d 1g 4-NO2 2d I 3gd 62 (51)
18 1a 3-OCH3 2e NO2 - -
a

1 mmol aldehyde and 1.3 mmol phenol;

b

1H NMR yield;

c

Isolated yield (in parenthesis);

d

Cross-coupling reaction between iodine and hydroxyl was observed besides the ortho-acylation reaction.

Interestingly, we found that when 2-substituted aryl aldehydes (1h–j) reacted with phenols, xanthones were obtained with high-yield in one step (Table 2). Albeit many methods are available for the synthesis of xanthones, most of them either require advanced starting materials, exotic reaction conditions, or involve multistep transformations.16 There are only a few one-step synthesis of xanthones existing in literature.17 Hence our method offers a concise and straightforward strategy to construct xanthones directly without the preactivation of aldehydes (Scheme 1).

Table 2.

One-step ortho-acylation of phenols with 2-substituted aldehydes to afford xanthones a

graphic file with name nihms417639t2.jpg

entry R1 R2 product Yield % b, c
1 1h OCH3 2a OCH3 4a 85(71)
2 1i NO2 2a OCH3 4a 87 (74)
3d 1j Br 2a OCH3 4a 68 (52)
4 1i NO2 2b i-Pr 4b 92 (81)
5 d 1j Br 2b i-Pr 4b 64 (56)
6 1i NO2 2c H 4c 81 (70)
7d 1j Br 2c H 4c 55 (43)
8 1i NO2 2d I 4d 73 (62)
a

1 mmol 2-substitued aldehydes and 1.3 mmol phenol;

b

1H NMR yield;

c

Isolated yield (in parenthesis);

d

Cross-coupling reaction between bromo and hydroxyl was observed in entries 3 (17%), 5 (14%) and 7 (13%) besides the ortho-acylation reaction.

Scheme 1.

Scheme 1

One-step synthesis of xanthones

As shown in Table 2, 2-methoxybenzaldehyde (1h) and 2-nitrobenzaldehyde (1i) produced the corresponding xanthones in good yields (62–81%) (entries 1, 2, 4, 6 and 8), while with 2-bromobenzaldehyde (1j) as the starting material, lower yields were observed, likely due to the cross-coupling reaction between bromo and hydroxyl groups (entries 3, 5 and 7, yields are listed in the footnote). It is believed that the ring-closed xanthone products are achieved via the ortho-acylation of phenols with 2-substituted aryl aldehydes first, and then under a basic condition, the ortho-substituents of aldehydes serveing as leaving groups lead to the final ring-closed xanthones.

Since nitro group gave better results than other leaving groups, the reaction substrates of 2-nitrobenzaldehydes and phenols were investigated (Table 3). It showed that alkoxy, alkyl, aryl and halide substituents were tolerated on the phenols to furnish the desired xanthones affording moderate to good yields. While an electron-donating groups on phenols can promote the reaction, a electron-withdrawing groups (NO2 or CN) will block the reaction completely (data not shown). If the substituted group was at the para postion of the phenol, the yield was higher than it was at ortho postion, possibly due to the steric effect (4d vs 4e, 4g vs 4h). The steric effect can also explain the excellent regioselectivity of this reaction (e.g. 4i was the sole product) as was as the slugish reactivity of ortho-t-butylphenol (no product was observed). Disubstitued and trisubstitued xanthones could also be prepared via this copper-catalyzed ortho-acylation reaction affording moderate yields (4m-p and 4t).

Table 3.

Scope of reaction of 2-nitrobenzaldehydes with phenols to prepare xanthones a

graphic file with name nihms417639t3.jpg

Product Yield (%) b, c Product Yield (%) b, c
4a graphic file with name nihms417639t4.jpg 87(74) 4k graphic file with name nihms417639t5.jpg 69 (55)
4b graphic file with name nihms417639t6.jpg 92 (81) 4l graphic file with name nihms417639t7.jpg 43 (30)
4c graphic file with name nihms417639t8.jpg 81 (70) 4m graphic file with name nihms417639t9.jpg 75 (64)
4d graphic file with name nihms417639t10.jpg 77 (62) 4n graphic file with name nihms417639t11.jpg 84 (72)
4e graphic file with name nihms417639t12.jpg 73 (62) 4o graphic file with name nihms417639t13.jpg 90 (80)
4f graphic file with name nihms417639t14.jpg 72 (59) 4p graphic file with name nihms417639t15.jpg 73 (61)
4g graphic file with name nihms417639t16.jpg 82 (73) 4q graphic file with name nihms417639t17.jpg 83 (70)
4h graphic file with name nihms417639t18.jpg 76 (60) 4r graphic file with name nihms417639t19.jpg 82 (70)
4i graphic file with name nihms417639t20.jpg 70 (58) 4s graphic file with name nihms417639t21.jpg 80 (69)
4j graphic file with name nihms417639t22.jpg 71 (55) 4t graphic file with name nihms417639t23.jpg 68 (57)
a

1 mmol 2-nitrobenzaldehydes, 1.3 mmol phenols;

b

1H NMR yield;

c

Isolated yield (in parenthesis).

Although the detailed mechanism is not very definitive, it is conceivable that this reaction is a Friedel-Crafts type reaction, which involves the nucleophilic addition of phenols to aldehydes under basic condition, and then followed by a dehydrogenative oxidation in air to give ortho-acylation products.11,18 If ortho-substituents of aldehydes are good leaving groups, ring-closed xanthones will form automatically. During this process, copper (serve as a Lewis acid) may interact with the phenol oxygen and stabilize the intermediates which lead to a smooth transformation.

In summary, we first demonstrated an intermolecular catalytic ortho-acylation of phenols with various aryl aldehydes in-depth using copper(II) as the catalyst in presence of triphenylphosphine. Furthermore, this method can be used to synthesize xanthones in one step with high-yield. We are currently investigating the expansion of this ortho-acylation strategy to a broader scope of substrates.

Supplementary Material

ESI

Footnotes

Electronic Supplementary Information (ESI) available: Table S1, Table S2, experimental details, data and spectra of Ms, 1H NMR, 13C NMR. See DOI: 10.1039/b000000x/

Notes and references

  • 1.(a) Weber M, Kleine-Boymann M. “Phenol” in Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH; 2004. [Google Scholar]; (b) Koehler K, Gordon S, Brandt P, Carlsson B, Backsbro-Saeidi A, Apelqvist T, Agback P, Grover GJ, Nelson W, Grynfarb M, Farnegardh M, Rehnmark S, Malm J. J. Med. Chem. 2006;49:6635. doi: 10.1021/jm060521i. [DOI] [PubMed] [Google Scholar]; (c) Gan FF, Chua YS, Scarmagnani S, Palaniappan P, Franks M, Poobalasingam T, Bradshaw TD, Westwell AD, Hagen T. Biochem. Biophys. Res. Commun. 2009;387:741. doi: 10.1016/j.bbrc.2009.07.104. [DOI] [PubMed] [Google Scholar]; (d) Finkelstein BL, Benner EA, Hendrixson MC, Kranis KT, Rauh JJ, Sethuraman MR, McCann SF. Bioorg. Med. Chem. 2002;10:599. doi: 10.1016/s0968-0896(01)00326-1. [DOI] [PubMed] [Google Scholar]; (e) Zhang L, Zhang JY. J. Comb. Chem. 2006;8:361. doi: 10.1021/cc0501007. [DOI] [PubMed] [Google Scholar]; (f) Rao HH, Li CJ. Angew. Chem. Int. Ed. 2011;50:8936. doi: 10.1002/anie.201103599. [DOI] [PubMed] [Google Scholar]
  • 2.(a) Rappoport Z. The Chemistry of Phenols. Weinheim: Wiley-VCH; 2003. [Google Scholar]; (b) Tyman JHP. Synthetic and Natural Phenols. New York: Elsevier; 1996. [Google Scholar]
  • 3.(a) Lewis LN, Smith JF. J. Am. Chem. Soc. 1986;108:2728. [Google Scholar]; (b) Lyons TW, Sanford MS. Chem. Rev. 2010;110:1147. doi: 10.1021/cr900184e. [DOI] [PMC free article] [PubMed] [Google Scholar]; (c) Ritleng V, Sirlin C, Pfeffer M. Chem. Rev. 2002;102:1731. doi: 10.1021/cr0104330. [DOI] [PubMed] [Google Scholar]; (d) Davies HML, Du Bois J, Yu JQ. Chem. Soc. Rev. 2011;40:1855. doi: 10.1039/c1cs90010b. [DOI] [PubMed] [Google Scholar]; (e) Bedford RB, Cazin CSJ, Holder D. Coord. Chem. Rev. 2004;248:2283. [Google Scholar]; (f) Sengupta S, Shi X. ChemCatChem. 2010;2:609. [Google Scholar]; (g) Huang K, Sun CL, Shi ZJ. Chem. Soc. Rev. 2011;40:2435. doi: 10.1039/c0cs00129e. [DOI] [PubMed] [Google Scholar]; (h) Racowski JM, Ball ND, Sanford MS. J. Am. Chem. Soc. 2011;133:18022. doi: 10.1021/ja2051099. [DOI] [PMC free article] [PubMed] [Google Scholar]; (i) Zhang G, Luo Y, Wang Y, Zhang L. Angew. Chem. Int. Ed. 2011;50:4450. doi: 10.1002/anie.201100293. [DOI] [PubMed] [Google Scholar]
  • 4.(a) Guo X, Li W, Li Z. Eur. J. Org. Chem. 2010:5787. [Google Scholar]; (b) Oelgemöller M, Schiel C, Fröhlich R, Mattay J. Eur. J. Org. Chem. 2002:2465. [Google Scholar]
  • 5.(a) Dick AR, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004;126:2300. doi: 10.1021/ja031543m. [DOI] [PubMed] [Google Scholar]; (b) Desai LV, Stowers KJ, Sanford MS. J. Am. Chem. Soc. 2008;130:13285. doi: 10.1021/ja8045519. [DOI] [PMC free article] [PubMed] [Google Scholar]; (c) Donald WA, McKenzie CJ, O'Hair RAJ. Angew. Chem. Int. Ed. 2011;50:8379. doi: 10.1002/anie.201102146. [DOI] [PubMed] [Google Scholar]; (d) Uhl W, Vinogradov A, Grimme S. J. Am. Chem. Soc. 2007;129:11259. doi: 10.1021/ja073657u. [DOI] [PubMed] [Google Scholar]
  • 6.(a) Thu HY, Yu WY, Che CM. J. Am. Chem. Soc. 2006;128:9048. doi: 10.1021/ja062856v. [DOI] [PubMed] [Google Scholar]; (b) Dick AR, Remy MS, Kampf JW, Sanford MS. Organometallics. 2007;26:1365. [Google Scholar]; (c) Yan W, Wang Q, Chen Y, Petersen JL, Shi X. Org. Lett. 2010;12:3308. doi: 10.1021/ol101082v. [DOI] [PubMed] [Google Scholar]; (d) Zhong C, Shi X. Eur. J. Org. Chem. 2010:2999. [Google Scholar]; (e) Lu B, Li C, Zhang L. J. Am. Chem. Soc. 2010;132:14070. doi: 10.1021/ja1072614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.(a) Oi S, Vatanabe S, Fukita S, Inoue Y. Tetrahedrion Lett. 2003;44:8665. [Google Scholar]; (b) Kalyani D, Dick AR, Anani WQ, Sanford MS. Org. Lett. 2006;8:2523. doi: 10.1021/ol060747f. [DOI] [PubMed] [Google Scholar]; (c) Wan WB, Ma ZX, Li BJ, Zhang KY, Cao SK, Zhang SW, Shi ZJ. J. Am. Chem. Soc. 2006;128:7416. doi: 10.1021/ja060232j. [DOI] [PubMed] [Google Scholar]; (d) Chen X, Hao XS, Goodhue CE, Yu JQ. J. Am. Chem. Soc. 2006;128:6790. doi: 10.1021/ja061715q. [DOI] [PubMed] [Google Scholar]; (e) Mei TS, Giri R, Maugel N, Yu JQ. Angew. Chem. Int. Ed. 2008;47:5215. doi: 10.1002/anie.200705613. [DOI] [PubMed] [Google Scholar]
  • 8.(a) Inamoto K, Arai Y, Hiroya K, Doi T. Chem. Commun. 2008:5529. doi: 10.1039/b811362a. [DOI] [PubMed] [Google Scholar]; (b) Inamoto K, Hasegawa C, Hiroya K, Doi T. Org. Lett. 2008;10:5147. doi: 10.1021/ol802033p. [DOI] [PubMed] [Google Scholar]; (c) Joyce LL, Batey RA. Org. Lett. 2009;11:2792. doi: 10.1021/ol900958z. [DOI] [PubMed] [Google Scholar]; (d) Zhao X, Dimitrijevic E, Dong VM. J. Am. Chem. Soc. 2009;131:3466. doi: 10.1021/ja900200g. [DOI] [PubMed] [Google Scholar]
  • 9.(a) Kalyani D, Deprez NR, Desai LV, Sanford MS. J. Am. Chem. Soc. 2005;127:7330. doi: 10.1021/ja051402f. [DOI] [PubMed] [Google Scholar]; (b) Deng GJ, Zhao L, Li CJ. Angew. Chem. Int. Ed. 2008;47:6278. doi: 10.1002/anie.200801544. [DOI] [PubMed] [Google Scholar]; (c) Zhao XD, Yu ZK. J. Am. Chem. Soc. 2008;130:8136. doi: 10.1021/ja803154h. [DOI] [PubMed] [Google Scholar]; (d) Tsai AS, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2008;130:6316. doi: 10.1021/ja8012159. [DOI] [PMC free article] [PubMed] [Google Scholar]; (e) Giri R, Yu JQ. J. Am. Chem. Soc. 2008;130:14082. doi: 10.1021/ja8063827. [DOI] [PubMed] [Google Scholar]; (f) Campeau LC, Schipper DJ, Fagnou K. J. Am. Chem. Soc. 2008;130:3266. doi: 10.1021/ja710451s. [DOI] [PubMed] [Google Scholar]; (g) Wu Y, Li B, Mao F, Li X, Kwong FY. Org. Lett. 2011;13:3258. doi: 10.1021/ol201201a. [DOI] [PubMed] [Google Scholar]
  • 10.Satoh T, Tsuda T, Terao Y, Miura M, Nomura M. J. Mol. Catal. A: Chem. 1999;143:203. [Google Scholar]
  • 11.Liang Q, Wu Q, Jiang J, Duan J, Wang C, Smith MD, Lu H, Wang Q, Nagarkatti P, Fan D. J. Bio. Chem. 2011;286:26470. doi: 10.1074/jbc.M111.227934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.(a) Takahashi N, Kanayama T, Okuyama K, Kataoka H, Fukaya H, Suzuki K, Matsumoto T. Chem. Asian. J. 2011;6:1752. doi: 10.1002/asia.201100187. [DOI] [PubMed] [Google Scholar]; (b) Suzuki Y, Fukuta Y, Ota S, Kamiya M, Sato M. J. Org. Chem. 2011;76:3960. doi: 10.1021/jo200303c. [DOI] [PubMed] [Google Scholar]; (c) Kondo M, Zhang LL, Ji HP, Kou Y, Ou BX. J. Agric. Food Chem. 2009;57:8788. doi: 10.1021/jf901012f. [DOI] [PubMed] [Google Scholar]; (d) Barbero N, SanMarin R, Dominguez E. Green Chem. 2009;11:830. [Google Scholar]; (e) Barber N, SanMarin R, Dominguez E. Tetrahedron. 2009;65:5729. [Google Scholar]
  • 13.Cardona ML, Fernandez MI, Pedro JR, Serrano A. Phytochemistry. 1990;29:3003. [Google Scholar]
  • 14.(a) Woo S, Jung J, Lee C, Kwon Y, Na Y. Bioorg. Med. Chem. Lett. 2007;17:1163. doi: 10.1016/j.bmcl.2006.12.030. [DOI] [PubMed] [Google Scholar]; (b) Matsumoto K, Akao Y, Ohguchi K, Ito T, Tanaka T, Iinuma M, Nozawa Y. Bioorg. Med. Chem. 2005;13:6064. doi: 10.1016/j.bmc.2005.06.065. [DOI] [PubMed] [Google Scholar]; (c) Schwaebe MK, Moran TJ, Whitten JP. Tetrahedron Lett. 2005;46:827. [Google Scholar]; (d) Pedro M, Cerqueira F, Sousa ME, Nascimento MSJ, Pinto M. Bioorg. Med. Chem. 2002;10:3725. doi: 10.1016/s0968-0896(02)00379-6. [DOI] [PubMed] [Google Scholar]; (e) Cardona ML, Fernandez MI, Pedro JR, Serrano A. Phytochemistry. 1990;29:3003. [Google Scholar]; (f) Peres V, Nagem TJ, Faustino de Oliveira F. Phytochemistry. 2000;55:683. doi: 10.1016/s0031-9422(00)00303-4. [DOI] [PubMed] [Google Scholar]; (g) Kenji M, Yukihiro A, Hong Y, Kenji O, Tetsuro I, Toshiyuki T, Emi K, Munekazu I, Yoshinori N. Bioorg. Med. Chem. 2004;12:5799. [Google Scholar]
  • 15.(a) Burgos CH, Barder TE, Huang X, Buchwald SL. Angew. Chem. Int. Ed. 2006;45:4321. doi: 10.1002/anie.200601253. [DOI] [PubMed] [Google Scholar]; (b) Bedford RB, Limmert ME. J. Org. Chem. 2003;68:8669. doi: 10.1021/jo030157k. [DOI] [PubMed] [Google Scholar]
  • 16.(a) Grover PK, Shah GD, Shah RC. J. Chem. Soc. 1955:3982. [Google Scholar]; (b) Jackson WT, Robert JB, Froelich LL, Gapinski DM, Mallett BE, Sawyer JS. J. Med. Chem. 1993;36:1726. doi: 10.1021/jm00064a006. [DOI] [PubMed] [Google Scholar]; (c) Familoni OB, Ionica I, Bower FJ, Snieckus V. Synlett. 1997:1081. [Google Scholar]; (d) Hassall CH, Lewis JR. J. Chem. Soc. 1961:2312. [Google Scholar]
  • 17.(a) Wang S, Xie K, Tan Z, An X, Zhou X, Guo C, Peng Z. Chem. Commun. 2009:6469. doi: 10.1039/b913951f. [DOI] [PubMed] [Google Scholar]; (b) Okuma K, Nojima A, Matsunaga N, Shioji K. Org. Lett. 2009;11:169. doi: 10.1021/ol802597x. [DOI] [PubMed] [Google Scholar]; (c) Zhao J, Larock RC. Org. Lett. 2005;7:4273. doi: 10.1021/ol0517731. [DOI] [PubMed] [Google Scholar]; (d) Zhao J, Larock RC. J. Org. Chem. 2007;72:583. doi: 10.1021/jo0620718. [DOI] [PMC free article] [PubMed] [Google Scholar]; (e) Zhang H, Shi R, Gan P, Liu C, Ding A, Wang Q, Lei A. Angew. Chem. Int. Ed. 2012;51:5204. doi: 10.1002/anie.201201050. [DOI] [PubMed] [Google Scholar]; (f) Zhao J, Yue D, Campo MA, Larock RC. J. Am. Chem. Soc. 2007;129:5288. doi: 10.1021/ja070657l. [DOI] [PubMed] [Google Scholar]; (g) Wang P, Rao H, Hua R, Li CJ. Org. Lett. 2012;14:902. doi: 10.1021/ol203381q. [DOI] [PubMed] [Google Scholar]
  • 18.(a) Satoh T, Tsuda T, Kushino Y, Miura M, Nomura M. J. Org. Chem. 1996;61:6476. doi: 10.1021/jo9610873. [DOI] [PubMed] [Google Scholar]; (b) Tamaru Y, Yamada Y, Inoue K, Yamamoto Y, Yoshida Z. J. Org. Chem. 1983;48:1286. [Google Scholar]; (c) Nagata W, Okada K, Aoki T. Synthesis. 1979:365. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

ESI

RESOURCES