Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jun;77(6):3379–3383. doi: 10.1073/pnas.77.6.3379

Sequential folding of a bifunctional allosteric protein.

J R Garel, A Dautry-Varsat
PMCID: PMC349619  PMID: 6774337

Abstract

Aspartokinase I-homoserine dehydrogenase I (EC 2.7.2.4 and EC 1.1.1.3) a bifunctional and allosteric enzyme, has been renatured from its unfolded and separated polypeptide chains. Folding was measured by the reappearance of each of the two enzymatic activities, kinase and dehydrogenase, and of their allosteric inhibition by the same effector, threonine. The various observed properties yield different kinetics of folding, which shows the presence of intermediates having only some of the functional features of the native enzyme. Apparently, three successive steps can be detected during the folding of aspartokinase I-homoserine dehydrogenase I: first, a monomolecular step leads to a monomeric species with the kinase activity; then an association step leads to a dimeric species with the kinase and dehydrogenase activities, and a threonine-sensitive dehydrogenase; finally, a second association step leads to a tetrameric species with the two activities, both sensitive to threonine. The folding of this large protein appears as a sequential process during which the functional properties are regained successively, as the protein structure becomes more complex. During this process, the two regions of each polypeptide chain respectively responsible for the kinase and dehydrogenase activities seem to acquire their native conformation rather independently of each other.

Full text

PDF
3379

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLACK S., WRIGHT N. G. Aspartic beta-semialdehyde dehydrogenase and aspartic beta-semialdehyde. J Biol Chem. 1955 Mar;213(1):39–50. [PubMed] [Google Scholar]
  2. Dautry-Varsat A., Garel J. R. Refolding of a bifunctional enzyme and its monofunctional fragment. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5979–5982. doi: 10.1073/pnas.75.12.5979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Engelhard M., Rudolph R., Jaenicke R. Equilibrium studies on the refolding and reactivation of rabbit-muscle aldolase after acid dissociation. Eur J Biochem. 1976 Aug 16;67(2):447–453. doi: 10.1111/j.1432-1033.1976.tb10709.x. [DOI] [PubMed] [Google Scholar]
  4. Fontan E., Truffa-Bachi P. The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K12. Carboxymethylation of a unique cysteine induces a conformational change of the enzyme. J Biol Chem. 1978 Apr 25;253(8):2758–2762. [PubMed] [Google Scholar]
  5. Fontan E., Truffa-Bachi P. The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K12. Carboxymethylation of the enzyme: threonine binding and inhibition are functionally dissociable. J Biol Chem. 1978 Apr 25;253(8):2754–2757. [PubMed] [Google Scholar]
  6. Koshland D. E., Jr, Neet K. E. The catalytic and regulatory properties of enzymes. Annu Rev Biochem. 1968;37:359–410. doi: 10.1146/annurev.bi.37.070168.002043. [DOI] [PubMed] [Google Scholar]
  7. PATTE J. C., LE BRAS G., LOVINY T., COHEN G. N. [Retro-inhibition and repression of the homoserine dehydrogenase of Escherichia coli]. Biochim Biophys Acta. 1963 Jan 8;67:16–30. doi: 10.1016/0006-3002(63)91793-1. [DOI] [PubMed] [Google Scholar]
  8. PORTER R. R. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J. 1959 Sep;73:119–126. doi: 10.1042/bj0730119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rossman M. G., Liljas A. Letter: Recognition of structural domains in globular proteins. J Mol Biol. 1974 May 5;85(1):177–181. doi: 10.1016/0022-2836(74)90136-3. [DOI] [PubMed] [Google Scholar]
  10. Rudolph R., Heider I., Westhof E., Jaenicke R. Mechanism of refolding and reactivation of lactic dehydrogenase from pig heart after dissociation in various solvent media. Biochemistry. 1977 Jul 26;16(15):3384–3390. doi: 10.1021/bi00634a015. [DOI] [PubMed] [Google Scholar]
  11. Rudolph R., Westhof E., Jaenicke R. Kinetic analysis of the reactivation of rabbit muscle aldolase after denaturation with guanidine-HCL. FEBS Lett. 1977 Feb 1;73(2):204–206. doi: 10.1016/0014-5793(77)80981-2. [DOI] [PubMed] [Google Scholar]
  12. Setlow P., Kornberg A. Deoxyribonucleic acid polymerase: two distinct enzymes in one polypeptide. II. A proteolytic fragment containing the 5' leads to 3' exonuclease function. Restoration of intact enzyme functions from the two proteolytic fragments. J Biol Chem. 1972 Jan 10;247(1):232–240. [PubMed] [Google Scholar]
  13. Teipel J. W., Koshland D. E., Jr Kinetic aspects of conformational changes in proteins. I. Rate of regain of enzyme activity from denatured proteins. Biochemistry. 1971 Mar 2;10(5):792–798. doi: 10.1021/bi00781a011. [DOI] [PubMed] [Google Scholar]
  14. Truffa-Bachi P., Veron M., Cohen G. N. Structure, function, and possible origin of a bifunctional allosteric enzyme, Escherichia coli aspartokinase I-homoserine dehydrogenase I. CRC Crit Rev Biochem. 1974;2(3):379–415. doi: 10.3109/10409237409105452. [DOI] [PubMed] [Google Scholar]
  15. Véron M., Falcoz-Kelly F., Cohen G. N. The threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K12. The two catalytic activities are carried by two independent regions of the polypeptide chain. Eur J Biochem. 1972 Aug 4;28(4):520–527. doi: 10.1111/j.1432-1033.1972.tb01939.x. [DOI] [PubMed] [Google Scholar]
  16. Wampler D. E., Westhead E. W. Two aspartokinases from Escherichia coli. Nature of the inhibition and molecular changes accompanying reversible inactivation. Biochemistry. 1968 May;7(5):1661–1671. doi: 10.1021/bi00845a007. [DOI] [PubMed] [Google Scholar]
  17. Wetlaufer D. B. Nucleation, rapid folding, and globular intrachain regions in proteins. Proc Natl Acad Sci U S A. 1973 Mar;70(3):697–701. doi: 10.1073/pnas.70.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES