Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jun;77(6):3393–3397. doi: 10.1073/pnas.77.6.3393

Model for haptoglobin heavy chain based upon structural homology.

J Greer
PMCID: PMC349622  PMID: 6932026

Abstract

A model has been constructed for haptoglobin heavy chain by using the known sequence homology to the mammalian serine proteases. The three-dimensional structures for three serine proteases, chymotrypsin, trypsin, and elastase, were compared and the structural features that are conserved in all three were extracted. The haptoglobin heavy chain sequence was aligned to the sequences of the three serine proteases by maximizing sequence homology in the regions of conserved structure. The resulting alignment shows that haptoglobin heavy chain must be very closely homologous to these proteases in structure as well as in sequence. Coordinates were derived for the heavy chain by using the homologous structures. The problems associated with these coordinates are outlined and methods for solving them are indicated. The features of the haptoglobin heavy chain structure are described. Implications of the structure for the very strong interaction between this subunit and hemoglobin are discussed.

Full text

PDF
3393

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  2. Birktoft J. J., Blow D. M. Structure of crystalline -chymotrypsin. V. The atomic structure of tosyl- -chymotrypsin at 2 A resolution. J Mol Biol. 1972 Jul 21;68(2):187–240. doi: 10.1016/0022-2836(72)90210-0. [DOI] [PubMed] [Google Scholar]
  3. Browne W. J., North A. C., Phillips D. C., Brew K., Vanaman T. C., Hill R. L. A possible three-dimensional structure of bovine alpha-lactalbumin based on that of hen's egg-white lysozyme. J Mol Biol. 1969 May 28;42(1):65–86. doi: 10.1016/0022-2836(69)90487-2. [DOI] [PubMed] [Google Scholar]
  4. Chothia C., Wodak S., Janin J. Role of subunit interfaces in the allosteric mechanism of hemoglobin. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3793–3797. doi: 10.1073/pnas.73.11.3793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Delbaere L. T., Brayer G. D., James M. N. Comparison of the predicted model of alpha-lytic protease with the x-ray structure. Nature. 1979 May 10;279(5709):165–168. doi: 10.1038/279165a0. [DOI] [PubMed] [Google Scholar]
  6. Delbaere L. T., Brayer G. D., James M. N. The 2.8 A resolution structure of Streptomyces griseus protease B and its homology with alpha-chymotrypsin and Streptomyces griseus protease A. Can J Biochem. 1979 Feb;57(2):135–144. doi: 10.1139/o79-017. [DOI] [PubMed] [Google Scholar]
  7. Greer J., Bush B. L. Macromolecular shape and surface maps by solvent exclusion. Proc Natl Acad Sci U S A. 1978 Jan;75(1):303–307. doi: 10.1073/pnas.75.1.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Honig B., Ray A., Levinthal C. Conformational flexibility and protein folding: rigid structural fragments connected by flexible joints in subtilisin BPN. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1974–1978. doi: 10.1073/pnas.73.6.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Huber R., Kukla D., Bode W., Schwager P., Bartels K., Deisenhofer J., Steigemann W. Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. II. Crystallographic refinement at 1.9 A resolution. J Mol Biol. 1974 Oct 15;89(1):73–101. doi: 10.1016/0022-2836(74)90163-6. [DOI] [PubMed] [Google Scholar]
  10. Hwang P. K., Greer J. Identification of residues involved in the binding of hemoglobin alpha chains to haptoglobin. J Biol Chem. 1979 Apr 10;254(7):2265–2270. [PubMed] [Google Scholar]
  11. Katz L., Levinthal C. Interactive computer graphics and representation of complex biological structures. Annu Rev Biophys Bioeng. 1972;1:465–504. doi: 10.1146/annurev.bb.01.060172.002341. [DOI] [PubMed] [Google Scholar]
  12. Kraut J. Serine proteases: structure and mechanism of catalysis. Annu Rev Biochem. 1977;46:331–358. doi: 10.1146/annurev.bi.46.070177.001555. [DOI] [PubMed] [Google Scholar]
  13. Kurosky A., Barnett D. R., Lee T. H., Touchstone B., Hay R. E., Arnott M. S., Bowman B. H., Fitch W. M. Covalent structure of human haptoglobin: a serine protease homolog. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3388–3392. doi: 10.1073/pnas.77.6.3388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kurosky A., Barnett D. R., Rasco M. A., Lee T. H., Bowman B. H. Evidence of homology between the beta-chain of human haptoglobin and the chymotrypsin family of serine proteases. Biochem Genet. 1974 Apr;11(4):279–293. doi: 10.1007/BF00485995. [DOI] [PubMed] [Google Scholar]
  15. Kurosky A., Hay R. E., Kim H., Touchstone B., Rasco M. A., Bowman B. H. Characterization of the cyanogen bromide fragments of the beta chain of human haptoglobin. Biochemistry. 1976 Nov 30;15(24):5326–5336. doi: 10.1021/bi00669a020. [DOI] [PubMed] [Google Scholar]
  16. Ladner R. C., Heidner E. J., Perutz M. F. The structure of horse methaemoglobin at 2-0 A resolution. J Mol Biol. 1977 Aug 15;114(3):385–414. doi: 10.1016/0022-2836(77)90256-x. [DOI] [PubMed] [Google Scholar]
  17. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  18. Malchy B., Rorstad O., Dixon G. H. The half-molecule of haptoglobin: studies on the product obtained by the selective cleavage of a haptoglobin disulfide. Can J Biochem. 1973 Mar;51(3):265–273. doi: 10.1139/o73-033. [DOI] [PubMed] [Google Scholar]
  19. McLachlan A. D., Shotton D. M. Structural similarities between alpha-lytic protease of Myxobacter 495 and elastase. Nat New Biol. 1971 Feb 17;229(7):202–205. doi: 10.1038/newbio229202a0. [DOI] [PubMed] [Google Scholar]
  20. Nagel R. L., Gibson Q. H. The binding of hemoglobin to haptoglobin and its relation to subunit dissociation of hemoglobin. J Biol Chem. 1971 Jan 10;246(1):69–73. [PubMed] [Google Scholar]
  21. Perutz M. F. Stereochemistry of cooperative effects in haemoglobin. Nature. 1970 Nov 21;228(5273):726–739. doi: 10.1038/228726a0. [DOI] [PubMed] [Google Scholar]
  22. Richards F. M. Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–176. doi: 10.1146/annurev.bb.06.060177.001055. [DOI] [PubMed] [Google Scholar]
  23. Rogard M., Waks M. Studies on hemoglobin tryptophanyl contact residues in the haptoglobin-hemoglobin complex. Eur J Biochem. 1977 Jul 15;77(2):367–373. doi: 10.1111/j.1432-1033.1977.tb11676.x. [DOI] [PubMed] [Google Scholar]
  24. Shim B. S., Lee T. H., Kang Y. S. Immunological and biochemical investigations of human serum haptoglobin: composition of haptoglobin-haemoglobin intermediate, haemoglobin-binding sites and presence of additional alleles for beta-chain. Nature. 1965 Sep 18;207(5003):1264–1267. doi: 10.1038/2071264a0. [DOI] [PubMed] [Google Scholar]
  25. Shotton D. M., Watson H. C. Three-dimensional structure of tosyl-elastase. Nature. 1970 Feb 28;225(5235):811–816. doi: 10.1038/225811a0. [DOI] [PubMed] [Google Scholar]
  26. Stroud R. M., Kay L. M., Dickerson R. E. The structure of bovine trypsin: electron density maps of the inhibited enzyme at 5 Angstrom and at 2-7 Angstron resolution. J Mol Biol. 1974 Feb 25;83(2):185–208. doi: 10.1016/0022-2836(74)90387-8. [DOI] [PubMed] [Google Scholar]
  27. Stroud R. M., Kossiakoff A. A., Chambers J. L. Mechanisms of zymogen activation. Annu Rev Biophys Bioeng. 1977;6:177–193. doi: 10.1146/annurev.bb.06.060177.001141. [DOI] [PubMed] [Google Scholar]
  28. de Haën C., Neurath H., Teller D. C. The phylogeny of trypsin-related serine proteases and their zymogens. New methods for the investigation of distant evolutionary relationships. J Mol Biol. 1975 Feb 25;92(2):225–259. doi: 10.1016/0022-2836(75)90225-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES