Abstract
Primary cultures of rat thyroid cells were made in medium supplemented with 0.1--0.5% calf serum and containing six hormones or growth factors: insulin, thyrotropin, transferrin, hydrocortisone, somatostatin, and glycyl-L-histidyl-L-lysine acetate. The FRTL strain was purified by successive colonial isolations and was found to maintain highly differentiated features (secretion into the culture medium of physiological amounts of thyroglobulin and concentration of iodide by 100-fold). The FRTL strain has been observed for more than 3 years in continuous culture. It has maintained the same biochemical and morphological characteristics that typified the primary cultures of thyroid follicular cells immediately after their enzymatic release from the rat thyroid. Thyroid epithelial cells that were grown under more conventional cell culture conditions failed to retain these specialized characteristics. We show that maintenance in vitro of these specialized functions of rat thyroid follicular cells is dependent on low serum concentrations and supplementation with hormones in the primary cultures. Our observations indicate that this culture strategem may be aplicable to the general problem of maintenance of differentiated characteristics in cultures of other epithelial cells.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- COHEN S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem. 1962 May;237:1555–1562. [PubMed] [Google Scholar]
- Cahn R. D., Cahn M. B. Heritability of cellular differentiation: clonal growth and expression of differentiation in retinal pigment cells in vitro. Proc Natl Acad Sci U S A. 1966 Jan;55(1):106–114. doi: 10.1073/pnas.55.1.106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coon H. G. Clonal stability and phenotypic expression of chick cartilage cells in vitro. Proc Natl Acad Sci U S A. 1966 Jan;55(1):66–73. doi: 10.1073/pnas.55.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coon H. G., Weiss M. C. A quantitative comparison of formation of spontaneous and virus-produced viable hybrids. Proc Natl Acad Sci U S A. 1969 Mar;62(3):852–859. doi: 10.1073/pnas.62.3.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAM R. G. CLONAL GROWTH OF MAMMALIAN CELLS IN A CHEMICALLY DEFINED, SYNTHETIC MEDIUM. Proc Natl Acad Sci U S A. 1965 Feb;53:288–293. doi: 10.1073/pnas.53.2.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi I., Sato G. H. Replacement of serum by hormones permits growth of cells in a defined medium. Nature. 1976 Jan 15;259(5539):132–134. doi: 10.1038/259132a0. [DOI] [PubMed] [Google Scholar]
- Izumi M., Larsen P. R. Metabolic clearance of endogenous and radioiodinated thyroglobulin in rats. Endocrinology. 1978 Jul;103(1):96–100. doi: 10.1210/endo-103-1-96. [DOI] [PubMed] [Google Scholar]
- KONIGSBERG I. R. Clonal analysis of myogenesis. Science. 1963 Jun 21;140(3573):1273–1284. doi: 10.1126/science.140.3573.1273. [DOI] [PubMed] [Google Scholar]
- Rheinwald J. G., Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975 Nov;6(3):331–343. doi: 10.1016/s0092-8674(75)80001-8. [DOI] [PubMed] [Google Scholar]
- Sato G., Zaroff L., Mills S. E. TISSUE CULTURE POPULATIONS AND THEIR RELATION TO THE TISSUE OF ORIGIN. Proc Natl Acad Sci U S A. 1960 Jul;46(7):963–972. doi: 10.1073/pnas.46.7.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tashjian A. H., Jr, Yasumura Y., Levine L., Sato G. H., Parker M. L. Establishment of clonal strains of rat pituitary tumor cells that secrete growth hormone. Endocrinology. 1968 Feb;82(2):342–352. doi: 10.1210/endo-82-2-342. [DOI] [PubMed] [Google Scholar]
- Tong W. The isolation and culture of thyroid cells. Methods Enzymol. 1974;32:745–758. doi: 10.1016/0076-6879(74)32078-2. [DOI] [PubMed] [Google Scholar]
- Westermark B., Karlsson F. A., Wålinder O. Thyrotropin is not a growth factor for human thyroid cells in culture. Proc Natl Acad Sci U S A. 1979 Apr;76(4):2022–2026. doi: 10.1073/pnas.76.4.2022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winand R. J., Kohn L. D. Thyrotropin effects on thyroid cells in culture. Effects of trypsin on the thyrotropin receptor and on thyrotropin-mediated cyclic 3':5'-AMP changes. J Biol Chem. 1975 Aug 25;250(16):6534–6540. [PubMed] [Google Scholar]