Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jul;77(7):3801–3805. doi: 10.1073/pnas.77.7.3801

Interaction between beta-adrenergic receptors and guanine nucleotide sites in turkey erythrocyte membranes.

G Vauquelin, S Bottari, C Andre, B Jacobsson, A D Strosberg
PMCID: PMC349714  PMID: 6253990

Abstract

beta 1-Adrenergic receptors from turkey erythrocyte membranes have been identified by specific binding of the radiolabeled antagonist (-)-[3H]dihydroalprenolol. These receptors are inactivated by the alkylating agent N-ethylmaleimide when occupied by beta-adrenergic agonists but not when occupied by antagonists or when unoccupied. A time-dependent decrease of the number of receptor sites is observed. Inactivation affects 45-60% of the sites, regardless of the agonist or N-ethylmaleimide concentration. The guanine nucleotides GTP and 5'-guanylyl imidodiphosphate effectively protect the receptors against agonist-mediated inactivation by N-ethylmaleimide. Protection by ATP necessitates a 100-fold higher concentration; 10 mM NaF is ineffective. The guanine nucleotide effect is reversible and occurs via interaction with N-ethylmaleimide-insensitive sites. These observations establish that guanine nucleotide sites interact with and caused structural modification of the agonist-occupied beta-adrenergic receptors in turkey erythrocyte membranes.

Full text

PDF
3801

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bottari S., Vauquelin G., Durieu O., Klutchko C., Strosberg A. D. The beta-adrenergic receptor of turkey erythrocyte membranes: conformational modification by beta-adrenergic agonists. Biochem Biophys Res Commun. 1979 Feb 28;86(4):1311–1318. doi: 10.1016/0006-291x(79)90259-6. [DOI] [PubMed] [Google Scholar]
  2. Cassel D., Levkovitz H., Selinger Z. The regulatory GTPase cycle of turkey erythrocyte adenylate cyclase. J Cyclic Nucleotide Res. 1977 Dec;3(6):393–406. [PubMed] [Google Scholar]
  3. Cassel D., Selinger Z. Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes. Biochim Biophys Acta. 1976 Dec 8;452(2):538–551. doi: 10.1016/0005-2744(76)90206-0. [DOI] [PubMed] [Google Scholar]
  4. Hanski E., Levitzki A. The absence of desensitization in the beta adrenergic receptors of turkey reticulocytes and erythrocytes and its possible origin. Life Sci. 1978 Jan;22(1):53–60. doi: 10.1016/0024-3205(78)90411-3. [DOI] [PubMed] [Google Scholar]
  5. Howlett A. C., Sternweis P. C., Macik B. A., Van Arsdale P. M., Gilman A. G. Reconstitution of catecholamine-sensitive adenylate cyclase. Association of a regulatory component of the enzyme with membranes containing the catalytic protein and beta-adrenergic receptors. J Biol Chem. 1979 Apr 10;254(7):2287–2295. [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Lad P. M., Nielsen T. B., Preston M. S., Rodbell M. The role of the guanine nucleotide exchange reaction in the regulation of the beta-adrenergic receptor and in the actions of catecholamines and cholera toxin on adenylate cyclase in turkey erythrocyte membranes. J Biol Chem. 1980 Feb 10;255(3):988–995. [PubMed] [Google Scholar]
  8. Lefkowitz R. J., Mullikin D., Caron M. G. Regulation of beta-adrenergic receptors by guanyl-5'-yl imidodiphosphate and other purine nucleotides. J Biol Chem. 1976 Aug 10;251(15):4686–4692. [PubMed] [Google Scholar]
  9. Levitzki A., Helmreich E. J. Hormone-receptor--adenylate cyclase interactions. FEBS Lett. 1979 May 15;101(2):213–219. doi: 10.1016/0014-5793(79)81011-x. [DOI] [PubMed] [Google Scholar]
  10. Limbird L. E., Lefkowitz R. J. Resolution of beta-adrenergic receptor binding and adenylate cyclase activity by gel exclusion chromatography. J Biol Chem. 1977 Jan 25;252(2):799–802. [PubMed] [Google Scholar]
  11. Maguire M. E., Van Arsdale P. M., Gilman A. G. An agonist-specific effect of guanine nucleotides on binding to the beta adrenergic receptor. Mol Pharmacol. 1976 Mar;12(2):335–339. [PubMed] [Google Scholar]
  12. Mukherjee C., Lefkowitz R. J. Desensitization of beta-adrenergic receptors by beta-adrenergic agonists in a cell-free system: resensitization by guanosine 5'-(beta, gamma-imino)triphosphate and other purine nucleotides. Proc Natl Acad Sci U S A. 1976 May;73(5):1494–1498. doi: 10.1073/pnas.73.5.1494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Oye I., Sutherland E. W. The effect of epinephrine and other agents on adenyl cyclase in the cell membrane of avian erythrocytes. Biochim Biophys Acta. 1966 Oct 31;127(2):347–354. doi: 10.1016/0304-4165(66)90389-8. [DOI] [PubMed] [Google Scholar]
  14. Pfeuffer T. GTP-binding proteins in membranes and the control of adenylate cyclase activity. J Biol Chem. 1977 Oct 25;252(20):7224–7234. [PubMed] [Google Scholar]
  15. Ross E. M., Maguire M. E., Sturgill T. W., Biltonen R. L., Gilman A. G. Relationship between the beta-adrenergic receptor and adenylate cyclase. J Biol Chem. 1977 Aug 25;252(16):5761–5775. [PubMed] [Google Scholar]
  16. Shear M., Insel P. A., Melmon K. L., Coffino P. Agonist-specific refractoriness induced by isoproterenol. Studies with mutant cells. J Biol Chem. 1976 Dec 10;251(23):7572–7576. [PubMed] [Google Scholar]
  17. Sternweis P. C., Gilman A. G. Reconstitution of catecholamine-sensitive adenylate cyclase. Reconstitution of the uncoupled variant of the S40 lymphoma cell. J Biol Chem. 1979 May 10;254(9):3333–3340. [PubMed] [Google Scholar]
  18. Tolkovsky A. M., Levitzki A. Mode of coupling between the beta-adrenergic receptor and adenylate cyclase in turkey erythrocytes. Biochemistry. 1978 Sep 5;17(18):3795–3795. doi: 10.1021/bi00611a020. [DOI] [PubMed] [Google Scholar]
  19. Vauquelin G., Bottari S., Kanarek L., Strosberg A. D. Evidence for essential disulfide bonds in beta1-adrenergic receptors of turkey erythrocyte membranes. Inactivation by dithiothreitol. J Biol Chem. 1979 Jun 10;254(11):4462–4469. [PubMed] [Google Scholar]
  20. Vauquelin G., Bottari S., Strosberg A. D. Inactivation of beta-adrenergic receptors by N-ethylmaleimide: permissive role of beta-adrenergic agents in relation to adenylate cyclase activation. Mol Pharmacol. 1980 Mar;17(2):163–171. [PubMed] [Google Scholar]
  21. Vauquelin G., Geynet P., Hanoune J., Strosberg A. D. Affinity chromatography of the beta-adrenergic receptor from turkey erythrocytes. Eur J Biochem. 1979 Aug 1;98(2):543–556. doi: 10.1111/j.1432-1033.1979.tb13215.x. [DOI] [PubMed] [Google Scholar]
  22. Vauquelin G., Geynet P., Hanoune J., Strosberg A. D. Isolation of adenylate cyclase-free, beta-adrenergic receptor from turkey erythrocyte membranes by affinity chromatography. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3710–3714. doi: 10.1073/pnas.74.9.3710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wessels M. R., Mullikin D., Lefkowitz R. J. Selective alteration in high affinity agonist binding: a mechanism of beta-adrenergic receptor desensitization. Mol Pharmacol. 1979 Jul;16(1):10–20. [PubMed] [Google Scholar]
  24. Williams L. T., Lefkowitz R. J. Slowly reversible binding of catecholamine to a nucleotide-sensitive state of the beta-adrenergic receptor. J Biol Chem. 1977 Oct 25;252(20):7207–7213. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES