Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jul;77(7):3889–3892. doi: 10.1073/pnas.77.7.3889

Evidence for formation of a rabbit liver aldolase--rabbit liver fructose-1,6-bisphosphatase complex.

J S MacGregor, V N Singh, S Davoust, E Melloni, S Pontremoli, B L Horecker
PMCID: PMC349732  PMID: 6253999

Abstract

The ability of rabbit liver aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphatate-lyase, EC 4.1.2.13) and rabbit liver fructose-1,6-bisphosphatase (Fru-P2ase; D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) to partition into the gel phase of Ultrogel AcA 34 is decreased in a mixture of the two enzymes. Titration experiments indicate that a 1:1 complex is formed. The value for the distribution coefficient of the complex corresponds to a molecular mass of 300,000 daltons, the value expected for a dimer containing one mole of each enzyme protein. Complex formation was not observed when either liver enzyme was replaced by the corresponding isozyme from rabbit muscle. The susceptibility of liver Fru-P2ase to limited proteolysis by subtilisin was reduced in the presence of liver aldolase, but not when the latter was replaced by muscle aldolase, suggesting that the conformation of Fru-P2ase is altered in the complex. Limited proteolysis of liver aldolase abolishes its ability both to form the heterodimer and to protect Fru-P2ase from modification by subtilisin.

Full text

PDF
3889

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ACKERS G. K. MOLECULAR EXCLUSION AND RESTRICTED DIFFUSION PROCESSES IN MOLECULAR-SIEVE CHROMATOGRAPHY. Biochemistry. 1964 May;3:723–730. doi: 10.1021/bi00893a021. [DOI] [PubMed] [Google Scholar]
  2. Arnold H., Nolte J., Pette D. Quantitative and histochemical studies on the desorption and readsorption of aldolase in cross-striated muscle. J Histochem Cytochem. 1969 May;17(5):314–320. doi: 10.1177/17.5.314. [DOI] [PubMed] [Google Scholar]
  3. Arnold H., Pette D. Binding of glycolytic enzymes to structure proteins of the muscle. Eur J Biochem. 1968 Nov;6(2):163–171. doi: 10.1111/j.1432-1033.1968.tb00434.x. [DOI] [PubMed] [Google Scholar]
  4. Benkovic S. J., Schray K. J. The anomeric specificity of glycolytic enzymes. Adv Enzymol Relat Areas Mol Biol. 1976;44:139–164. doi: 10.1002/9780470122891.ch4. [DOI] [PubMed] [Google Scholar]
  5. Black W. J., Van Tol A., Fernando J., Horecker B. L. Isolation of ahighly active fructose diphosphatase from rabit muscle: its subunit structure and activation by monovalent cations. Arch Biochem Biophys. 1972 Aug;151(2):576–590. doi: 10.1016/0003-9861(72)90535-8. [DOI] [PubMed] [Google Scholar]
  6. Clarke F. M., Masters C. J. On the association of glycolytic enzymes with structural proteins of skeletal muscle. Biochim Biophys Acta. 1975 Jan 13;381(1):37–46. doi: 10.1016/0304-4165(75)90187-7. [DOI] [PubMed] [Google Scholar]
  7. DRECHSLER E. R., BOYER P. D., KOWALSKY A. G. The catalytic activity of carboxypeptidase-degraded aldolase. J Biol Chem. 1959 Oct;234:2627–2634. [PubMed] [Google Scholar]
  8. El-Dorry H. A., Chu D. K., Dzugaj A., Tsolas O., Pontremoli S., Horecker B. L. Rabbit liver fructose 1,6-bisphosphatase: the sequence of the amino-terminal region. Arch Biochem Biophys. 1977 Jan 15;178(1):200–207. doi: 10.1016/0003-9861(77)90185-0. [DOI] [PubMed] [Google Scholar]
  9. Fahien L. A., Smith S. E. The enzyme-enzyme complex of transaminase and glutamate dehydrogenase. J Biol Chem. 1974 May 10;249(9):2696–2703. [PubMed] [Google Scholar]
  10. Gracy R. W., Lacko A. G., Horecker B. L. Subunit structure and chemical properties of rabbit liver aldolase. J Biol Chem. 1969 Jul 25;244(14):3913–3919. [PubMed] [Google Scholar]
  11. Lai C. Y. Studies on the structure of rabbit muscle aldolase. I. Cleavage with cyanogen bromide: an approach to the determination of the total primary structure. Arch Biochem Biophys. 1968 Oct;128(1):201–211. [PubMed] [Google Scholar]
  12. Lazo P. S., Tsolas O., Sun S. C., Pontremoli S., Horecker B. L. Modification of fructose bisphosphatase by a proteolytic enzyme from rat liver lysosomes. Arch Biochem Biophys. 1978 Jun;188(2):308–314. doi: 10.1016/s0003-9861(78)80014-9. [DOI] [PubMed] [Google Scholar]
  13. Ovádi J., Keleti T. Kinetic evidence for interaction between aldolase and D-glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1978 Apr;85(1):157–161. doi: 10.1111/j.1432-1033.1978.tb12223.x. [DOI] [PubMed] [Google Scholar]
  14. Ovádi J., Salerno C., Keleti T., Fasella P. Physico-chemical evidence for the interaction between aldolase and glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1978 Oct 16;90(3):499–503. doi: 10.1111/j.1432-1033.1978.tb12629.x. [DOI] [PubMed] [Google Scholar]
  15. Patthy L., Vas M. Aldolase-catalysed inactivation of glyceraldehyde-3-phosphate dehydrogenase. Nature. 1978 Nov 2;276(5683):94–95. doi: 10.1038/276094a0. [DOI] [PubMed] [Google Scholar]
  16. Pontremoli S., Melloni E., Balestrero F., De Flora A., Horecker B. L. Ligand-induced conformational states of rabbit liver fructose 1,6-bisphosphatase as revealed by digestion with subtilisin. Arch Biochem Biophys. 1973 May;156(1):255–260. doi: 10.1016/0003-9861(73)90363-9. [DOI] [PubMed] [Google Scholar]
  17. Pontremoli S., Melloni E., Salamino F., Sparatore B., Michetti M., Singh V. N., Horecker B. L. Evidence for an interaction between fructose 1,6-bisphosphatase and fructose 1,6-bisphosphate aldolase. Arch Biochem Biophys. 1979 Oct 1;197(1):356–363. doi: 10.1016/0003-9861(79)90256-x. [DOI] [PubMed] [Google Scholar]
  18. Sia C. L., Horecker B. L. The molecular weight of rabbit muscle aldolase and the properties of the subunits in acid solution. Arch Biochem Biophys. 1968 Jan;123(1):186–194. doi: 10.1016/0003-9861(68)90118-5. [DOI] [PubMed] [Google Scholar]
  19. Strapazon E., Steck T. L. Binding of rabbit muscle aldolase to band 3, the predominant polypeptide of the human erythrocyte membrane. Biochemistry. 1976 Apr 6;15(7):1421–1424. doi: 10.1021/bi00652a011. [DOI] [PubMed] [Google Scholar]
  20. Strapazon E., Steck T. L. Interaction of the aldolase and the membrane of human erythrocytes. Biochemistry. 1977 Jun 28;16(13):2966–2971. doi: 10.1021/bi00632a025. [DOI] [PubMed] [Google Scholar]
  21. Traniello S., Melloni E., Pontremoli S., Sia C. L., Horecker R. L. Rabbit liver fructose 1,6-diphosphatase. Properties of the native enzyme and their modification by subtilisin. Arch Biochem Biophys. 1972 Mar;149(1):222–231. doi: 10.1016/0003-9861(72)90317-7. [DOI] [PubMed] [Google Scholar]
  22. Traniello S., Pontremoli S., Tashima Y., Horecker B. L. Fructose 1, 6-diphosphatase from liver: isolation of the native form with optimal activity at neutral pH. Arch Biochem Biophys. 1971 Sep;146(1):161–166. doi: 10.1016/s0003-9861(71)80052-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES