Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jul;77(7):4026–4029. doi: 10.1073/pnas.77.7.4026

Reversibility of sodium-induced aggregation of sonicated phosphatidylserine vesicles.

E P Day, A Y Kwok, S K Hark, J T Ho, W J Vail, J Bentz, S Nir
PMCID: PMC349761  PMID: 6933449

Abstract

The kinetics of sodium-induced aggregation of sonicated phosphatidylserine vesicles has been studied as a function of sodium concentration and temperature. The concentration threshold for aggregation induced by monovalent sodium has been found to be 550 mM sodium by stopped-flow rapid-mixing techniques. This aggregation is completely reversible to changes in sodium ion concentration and to changes in temperature. The aggregation rate decreases with increasing temperature, indicating that the backward reaction rate increases more rapidly with temperature than does the forward rate.

Full text

PDF
4026

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Day E. P., Ho J. T., Kunze R. K., Jr, Sun S. T. Dynamic light scattering study of calcium-induced fusion in phospholipid vesicles. Biochim Biophys Acta. 1977 Nov 1;470(3):503–508. doi: 10.1016/0005-2736(77)90142-0. [DOI] [PubMed] [Google Scholar]
  2. Lansman J., Haynes D. H. Kinetics of a Ca-2+-triggered membrane aggregation reaction of phospholipid membranes. Biochim Biophys Acta. 1975 Jul 3;394(3):335–347. doi: 10.1016/0005-2736(75)90288-6. [DOI] [PubMed] [Google Scholar]
  3. Liao M. J., Prestegard J. H. Fusion of phosphatidic acid-phosphatidylcholine mixed lipid vesicles. Biochim Biophys Acta. 1979 Jan 19;550(2):157–173. doi: 10.1016/0005-2736(79)90204-9. [DOI] [PubMed] [Google Scholar]
  4. Papahadjopoulos D., Miller N. Phospholipid model membranes. I. Structural characteristics of hydrated liquid crystals. Biochim Biophys Acta. 1967 Sep 9;135(4):624–638. doi: 10.1016/0005-2736(67)90094-6. [DOI] [PubMed] [Google Scholar]
  5. Papahadjopoulos D., Vail W. J., Jacobson K., Poste G. Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. Biochim Biophys Acta. 1975 Jul 3;394(3):483–491. doi: 10.1016/0005-2736(75)90299-0. [DOI] [PubMed] [Google Scholar]
  6. Papahadjopoulos D., Vail W. J., Newton C., Nir S., Jacobson K., Poste G., Lazo R. Studies on membrane fusion. III. The role of calcium-induced phase changes. Biochim Biophys Acta. 1977 Mar 17;465(3):579–598. doi: 10.1016/0005-2736(77)90275-9. [DOI] [PubMed] [Google Scholar]
  7. Poste G., Allison A. C. Membrane fusion. Biochim Biophys Acta. 1973 Dec 28;300(4):421–465. doi: 10.1016/0304-4157(73)90015-4. [DOI] [PubMed] [Google Scholar]
  8. Sun S. T., Day E. P., Ho J. T. Temperature dependence of calcium-induced fusion of sonicated phosphatidylserine vesicles. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4325–4328. doi: 10.1073/pnas.75.9.4325. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES