Abstract
We show applications of the optimal imaging method to stained biological macromolecules. This optimal imaging method involves the following basic procedures: (i) for any given resolution, which is represented by the electron probe size in the scanning transmission electron microscope, a preferred magnification is used; (ii) the micrographs taken at the condition described above are then spatially filtered by using a low-pass filter (nu < 1/2d, in which d is the space between scan lines) to optically reconstruct the final optimal image. It is found that the micrographs obtained by using the optimal imaging method clearly show an improvement in contrast.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Vinogradov S. N., Shlom J. M., Hall B. C., Kapp O. H., Mizukami H. The dissociation of Lumbricus terrestris hemoglobin: a model of its subunit structure. Biochim Biophys Acta. 1977 May 27;492(1):136–155. doi: 10.1016/0005-2795(77)90221-5. [DOI] [PubMed] [Google Scholar]
- Wall J., Langmore J., Isaacson M., Crewe A. V. Scanning transmission electron microscopy at high resolution. Proc Natl Acad Sci U S A. 1974 Jan;71(1):1–5. doi: 10.1073/pnas.71.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wells R. M., Dales R. P. Subunit organisation in the respiratory proteins of the Polychaeta. Comp Biochem Physiol A Comp Physiol. 1976;54(4):387–394. doi: 10.1016/0300-9629(76)90036-0. [DOI] [PubMed] [Google Scholar]









