Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jul;77(7):4118–4122. doi: 10.1073/pnas.77.7.4118

DNA-protein interactions in the Drosophila melanogaster mitochondrial genome as deduced from trimethylpsoralen crosslinking patterns.

D A Potter, J M Fostel, M Berninger, M L Pardue, T R Cech
PMCID: PMC349781  PMID: 6776522

Abstract

The location of proteins on the mitochondrial DNA (mtDNA) of Drosophila melanogaster was investigated by trimethylpsoralen photoreaction of embryos disrupted by gentle homogenization. After photoreaction, the mtDNA was isolated and the pattern of DNA crosslinking was determined by electron microscopy of the DNA under totally denaturing conditions. In contrast to nuclear DNA, which showed periodic crosslinks indicative of a nucleosome structure, most of each mtDNA molecule exhibited uniformly heavy crosslinking. A 10% region of the mtDNA was, however, protected from psoralen crosslinking in a distinctive manner: five uncrosslinked segments were closely clustered in the mtDNA. Four were 394 +/- 13 (SD) base pairs in size, while the fifth measured about 200 base pairs. These protected segments mapped within the A+T-rich region of the mtDNA, extending from the end of the A+T-rich region near the Bg1 II cleavage site to the center of the A+T-rich region. Protection of this part of the mtDNA from crosslinking was interpreted to be the result of association with proteins in the mitochondrion because mtDNA that was deproteinized before the photoreaction was uniformly crosslinked over its entire length. The origin of replication of the mtDNA is also located at the center of the A+T-rich region, which suggests that the protection from the psoralen photoreaction may be due to proteins involved in membrane attachment or replication.

Full text

PDF
4118

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albring M., Griffith J., Attardi G. Association of a protein structure of probable membrane derivation with HeLa cell mitochondrial DNA near its origin of replication. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1348–1352. doi: 10.1073/pnas.74.4.1348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bultmann H., Laird C. D. Mitochondrial DNA from Drosophila melanogaster. Biochim Biophys Acta. 1973 Mar 19;299(2):196–209. doi: 10.1016/0005-2787(73)90342-0. [DOI] [PubMed] [Google Scholar]
  3. Caron F., Jacq C., Rouvière-Yaniv J. Characterization of a histone-like protein extracted from yeast mitochondria. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4265–4269. doi: 10.1073/pnas.76.9.4265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cech T. R., Pardue M. L. Electron microscopy of DNA crosslinked with trimethylpsoralen: test of the secondary structure of eukaryotic inverted repeat sequences. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2644–2648. doi: 10.1073/pnas.73.8.2644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cech T. R., Potter D., Pardue M. L. Chromatin structure in living cells. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):191–198. doi: 10.1101/sqb.1978.042.01.021. [DOI] [PubMed] [Google Scholar]
  6. Cech T., Pardue M. L. Cross-linking of DNA with trimethylpsoralen is a probe for chromatin structure. Cell. 1977 Jul;11(3):631–640. doi: 10.1016/0092-8674(77)90080-0. [DOI] [PubMed] [Google Scholar]
  7. Cech T., Potter D., Pardue M. L. Electron microscopy of DNA cross-linked with trimethylpsoralen: a probe for chromatin structure. Biochemistry. 1977 Nov 29;16(24):5313–5321. doi: 10.1021/bi00643a024. [DOI] [PubMed] [Google Scholar]
  8. Choci W. Y., Laird C. D. DNA and polyribosome-like structures in lysates of mitochondria of Drosophila melanogaster. J Mol Biol. 1976 Feb 5;100(4):493–518. doi: 10.1016/s0022-2836(76)80042-3. [DOI] [PubMed] [Google Scholar]
  9. Cole R. S. Light-induced cross-linking of DNA in the presence of a furocoumarin (psoralen). Studies with phage lambda, Escherichia coli, and mouse leukemia cells. Biochim Biophys Acta. 1970 Sep 17;217(1):30–39. doi: 10.1016/0005-2787(70)90119-x. [DOI] [PubMed] [Google Scholar]
  10. Dall'Acqua F., Marciani S., Ciavatta L., Rodighiero G. Formation of inter-strand cross-linkings in the photoreactions between furocoumarins and DNA. Z Naturforsch B. 1971 Jun;26(6):561–569. doi: 10.1515/znb-1971-0613. [DOI] [PubMed] [Google Scholar]
  11. Fristrom J. W., Logan W. R., Murphy C. The synthetic and minimal culture requirements for evagination of imaginal discs of Drosophila melanogaster in vitro. Dev Biol. 1973 Aug;33(2):441–456. doi: 10.1016/0012-1606(73)90149-8. [DOI] [PubMed] [Google Scholar]
  12. Goddard J. M., Wolstenholme D. R. Origin and direction of replication in mitochondrial DNA molecules from Drosophila melanogaster. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3886–3890. doi: 10.1073/pnas.75.8.3886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hanson C. V., Shen C. K., Hearst J. E. Cross-linking of DNA in situ as a probe for chromatin structure. Science. 1976 Jul 2;193(4247):62–64. doi: 10.1126/science.935855. [DOI] [PubMed] [Google Scholar]
  14. Kasamatsu H., Robberson D. L., Vinograd J. A novel closed-circular mitochondrial DNA with properties of a replicating intermediate. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2252–2257. doi: 10.1073/pnas.68.9.2252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Klukas C. K., Dawid I. B. Characterization and mapping of mitochondrial ribosomal RNA and mitochondrial DNA in Drosophila melanogaster. Cell. 1976 Dec;9(4 Pt 1):615–625. doi: 10.1016/0092-8674(76)90044-1. [DOI] [PubMed] [Google Scholar]
  16. Nass M. M. Mitochondrial DNA. I. Intramitochondrial distribution and structural relations of single- and double-length circular DNA. J Mol Biol. 1969 Jun 28;42(3):521–528. doi: 10.1016/0022-2836(69)90240-x. [DOI] [PubMed] [Google Scholar]
  17. Peacock W. J., Brutlag D., Goldring E., Appels R., Hinton C. W., Lindsley D. L. The organization of highly repeated DNA sequences in Drosophila melanogaster chromosomes. Cold Spring Harb Symp Quant Biol. 1974;38:405–416. doi: 10.1101/sqb.1974.038.01.043. [DOI] [PubMed] [Google Scholar]
  18. Polan M. L., Friedman S., Gall J. G., Gehring W. Isolation and characterization of mitochondrial DNA from Drosophila melanogaster. J Cell Biol. 1973 Feb;56(2):580–589. doi: 10.1083/jcb.56.2.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rubenstein J. L., Brutlag D., Clayton D. A. The mitochondrial DNA of Drosophila melanogaster exists in two distinct and stable superhelical forms. Cell. 1977 Oct;12(2):471–482. doi: 10.1016/0092-8674(77)90123-4. [DOI] [PubMed] [Google Scholar]
  20. Shen C. J., Hearst J. E. Detection of long-range sequence order in Drosophila melanogaster satellite DNA IV by a photochemical crosslinking reaction and denaturation microscopy. J Mol Biol. 1977 May 25;112(3):495–507. doi: 10.1016/s0022-2836(77)80195-2. [DOI] [PubMed] [Google Scholar]
  21. Wiesehahn G., Hearst J. E. DNA unwinding induced by photoaddition of psoralen derivatives and determination of dark-binding equilibrium constants by gel electrophoresis. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2703–2707. doi: 10.1073/pnas.75.6.2703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wieshahn G. P., Hyde J. E., Hearst J. E. The photoaddition of trimethylpsoralen to Drosophila melanogaster nuclei: a probe for chromatin substructure. Biochemistry. 1977 Mar 8;16(5):925–932. doi: 10.1021/bi00624a018. [DOI] [PubMed] [Google Scholar]
  23. Wolstenholme D. R., Fauron C. M. A partial map of the circular mitochondrial genome of Drosophila melanogaster. Location of EcoRI-sensitive sites and the adenine-thymine-rich region. J Cell Biol. 1976 Nov;71(2):434–448. doi: 10.1083/jcb.71.2.434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wolstenholme D. R. Replicating DNA molecules from eggs of Drosophila melanogaster. Chromosoma. 1973 Jul 23;43(1):1–18. doi: 10.1007/BF01256731. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES