Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jul;77(7):4123–4126. doi: 10.1073/pnas.77.7.4123

Prevalent deficiency in tumor cells of cycloheximide-induced cycle arrest.

E E Medrano, A B Pardee
PMCID: PMC349782  PMID: 6933461

Abstract

Mammalian cell growth is regulated by a process that is completed at a restriction point in the late G1 part of the cycle. This process is highly sensitive to serum concentration and to moderate inhibition of protein synthesis by cycloheximide (CHM) or other agents. We have proposed that a cell must accumulate a labile protein in a critical amount before events related to its DNA synthesis can start. The accumulation of this protein requires conditions suitable for growth, including sufficient amounts of serum-derived factors. An important criterion for attributing a major role to such a regulatory mechanism is that cells whose growth control is modified--e.g., by mutation--should be defective in this process. Cells of this kind are produced by tumorigenic transformation. We show here that mouse 3T3 cells, human fibroblasts, and Chinese hamster CHEF/18 cells have stringent G1 growth control by CHM. In contrast, tumorigenic lines obtained from these cells by transformation with varius agents (DNA tumor virus, RNA tumor virus, chemical carcinogens) or spontaneously all showed relaxed growth control under the influence of CHM. In these lines, growth control was relaxed to different degrees; some lines were held in G1 by a combination of low serum concentration and CHM, but others were not. Serum concentration showed a synergistic effect with CHM. Low serum concentrations did not limit growth only by affecting the rate of protein synthesis. The labile-protein mechanism is likely to be basic to growth control by serum factors. Transformed tumorigenic cells in general may have relaxed this mechanism.

Full text

PDF
4123

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaronson S. A., Stephenson J. R. Endogenous type-C RNA viruses of mammalian cells. Biochim Biophys Acta. 1976 Dec 23;458(4):323–354. doi: 10.1016/0304-419x(76)90006-8. [DOI] [PubMed] [Google Scholar]
  2. Aaronson S. A., Todaro G. J. Development of 3T3-like lines from Balb-c mouse embryo cultures: transformation susceptibility to SV40. J Cell Physiol. 1968 Oct;72(2):141–148. doi: 10.1002/jcp.1040720208. [DOI] [PubMed] [Google Scholar]
  3. Benecke B. J., Ben-Ze'ev A., Penman S. The control of mRNA production, translation and turnover in suspended and reattached anchorage-dependent fibroblasts. Cell. 1978 Aug;14(4):931–939. doi: 10.1016/0092-8674(78)90347-1. [DOI] [PubMed] [Google Scholar]
  4. Brooks R. F. Continuous protein synthesis is required to maintain the probability of entry into S phase. Cell. 1977 Sep;12(1):311–317. doi: 10.1016/0092-8674(77)90209-4. [DOI] [PubMed] [Google Scholar]
  5. Cherington P. V., Smith B. L., Pardee A. B. Loss of epidermal growth factor requirement and malignant transformation. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3937–3941. doi: 10.1073/pnas.76.8.3937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cho H. Y., Rhim J. S. Cycloheximide-dependent reversion of human cells transformed by MSV and chemical carcinogen. Science. 1979 Aug 17;205(4407):691–693. doi: 10.1126/science.223242. [DOI] [PubMed] [Google Scholar]
  7. Croce C. M., Girardi A. J., Koprowski H. Assignment of the T-antigen gene of simian virus 40 to human chromosome C-7. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3617–3620. doi: 10.1073/pnas.70.12.3617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dubrow R., Riddle V. G., Pardee A. B. Different responses to drugs and serum of cells transformed by various means. Cancer Res. 1979 Jul;39(7 Pt 1):2718–2726. [PubMed] [Google Scholar]
  9. Highfield D. P., Dewey W. C. Inhibition of DNA synthesis in synchronized Chinese hamster cells treated in G1 or early S phase with cycloheximide or puromycin. Exp Cell Res. 1972 Dec;75(2):314–320. doi: 10.1016/0014-4827(72)90435-1. [DOI] [PubMed] [Google Scholar]
  10. Holley R. W., Baldwin J. H., Kiernan J. A., Messmer T. O. Control of growth of benzo(a)pyrene-transformed 3T3 cells. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3229–3232. doi: 10.1073/pnas.73.9.3229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holley R. W. Control of growth of mammalian cells in cell culture. Nature. 1975 Dec 11;258(5535):487–490. doi: 10.1038/258487a0. [DOI] [PubMed] [Google Scholar]
  12. Oshiro Y., DiPaolo J. A. Changes in the uptake of 2-deoxy-D-glucose in BALB-3T3 cells chemically transformed in culture. J Cell Physiol. 1974 Apr;83(2):193–201. doi: 10.1002/jcp.1040830205. [DOI] [PubMed] [Google Scholar]
  13. Pardee A. B. A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1286–1290. doi: 10.1073/pnas.71.4.1286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rossow P. W., Riddle V. G., Pardee A. B. Synthesis of labile, serum-dependent protein in early G1 controls animal cell growth. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4446–4450. doi: 10.1073/pnas.76.9.4446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sager R., Kovac P. E. Genetic analysis of tumorigenesis: I. Expression of tumor-forming ability in hamster hybrid cell lines. Somatic Cell Genet. 1978 May;4(3):375–392. doi: 10.1007/BF01542849. [DOI] [PubMed] [Google Scholar]
  16. Scher C. D., Pledger W. J., Martin P., Antoniades H., Stiles C. D. Transforming viruses directly reduce the cellular growth requirement for a platelet derived growth factor. J Cell Physiol. 1978 Dec;97(3 Pt 1):371–380. doi: 10.1002/jcp.1040970312. [DOI] [PubMed] [Google Scholar]
  17. Schneider E. L., Stanbridge E. J., Epstein C. J. Incorporation of 3H-uridine and 3H-uracil into RNA: a simple technique for the detection of mycoplasma contamination of cultured cells. Exp Cell Res. 1974 Mar 15;84(1):311–318. doi: 10.1016/0014-4827(74)90411-x. [DOI] [PubMed] [Google Scholar]
  18. Schneiderman M. H., Dewey W. C., Highfield D. P. Inhibition of DNA synthesis in synchronized Chinese hamster cells treated in G1 with cycloheximide. Exp Cell Res. 1971 Jul;67(1):147–155. doi: 10.1016/0014-4827(71)90630-6. [DOI] [PubMed] [Google Scholar]
  19. Seki S., Mueller G. C. A requirement for RNA, protein and DNA synthesis in the establishment of DNA replicase activity in synchronized HeLa cells. Biochim Biophys Acta. 1975 Feb 10;378(3):354–362. doi: 10.1016/0005-2787(75)90180-x. [DOI] [PubMed] [Google Scholar]
  20. Smith H. S., Owens R. B., Hiller A. J., Nelson-Rees W. A., Johnston J. O. The biology of human cells in tissue culture. I. Characterization of cells derived from osteogenic sarcomas. Int J Cancer. 1976 Feb 15;17(2):219–234. doi: 10.1002/ijc.2910170211. [DOI] [PubMed] [Google Scholar]
  21. Studzinski G. P., Gierthy J. F. Selective inhibition of the cell cycle of cultured human diploid fibroblasts by aminonucleoside of puromycin. J Cell Physiol. 1973 Feb;81(1):71–83. doi: 10.1002/jcp.1040810109. [DOI] [PubMed] [Google Scholar]
  22. TODARO G. J., GREEN H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol. 1963 May;17:299–313. doi: 10.1083/jcb.17.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Todaro G. J., De Larco J. E., Cohen S. Transformation by murine and feline sarcoma viruses specifically blocks binding of epidermal growth factor to cells. Nature. 1976 Nov 4;264(5581):26–31. doi: 10.1038/264026a0. [DOI] [PubMed] [Google Scholar]
  24. Yen A., Pardee A. B. Arrested states produced by isoleucine deprivation and their relationship to the low serum produced arrested state in Swiss 3T3 cells. Exp Cell Res. 1978 Jul;114(2):389–395. doi: 10.1016/0014-4827(78)90497-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES