Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jul;77(7):4188–4192. doi: 10.1073/pnas.77.7.4188

Genetic analysis of epidermal growth factor action: assignment of human epidermal growth factor receptor gene to chromosome 7.

R L Davies, V A Grosse, R Kucherlapati, M Bothwell
PMCID: PMC349796  PMID: 6254014

Abstract

Purified murine epidermal growth factor (EGF) binds to mouse and human cells. Two mouse transformed cell lines of different origins, PG19 and B82, were found to lack EGF receptors (EGFR). The defect in each of these two cell lines seems to be identical because they fail to complement each other. Somatic cell hybrids between these EGFR-deficient mouse cells and human cells expressing EGFR were produced. Several of these hybrids bound labeled EGF. Detailed cytogenetic analysis of these cell hybrids, followed by correlation of EGFR expression with human chromosomes revealed that EGFR presence correlated with human chromosome 7. The results suggest that the structural gene or a gene necessary for expression of the human EGF receptor is located on human chromosome 7.

Full text

PDF
4188

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown M. S., Goldstein J. L. Receptor-mediated control of cholesterol metabolism. Science. 1976 Jan 16;191(4223):150–154. doi: 10.1126/science.174194. [DOI] [PubMed] [Google Scholar]
  2. Burton L. E., Wilson W. H., Shooter E. M. Nerve growth factor in mouse saliva. Rapid isolation procedures for and characterization of 7 S nerve growth factor. J Biol Chem. 1978 Nov 10;253(21):7807–7812. [PubMed] [Google Scholar]
  3. Carpenter G., Cohen S. 125I-labeled human epidermal growth factor. Binding, internalization, and degradation in human fibroblasts. J Cell Biol. 1976 Oct;71(1):159–171. doi: 10.1083/jcb.71.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carpenter G., Cohen S. Epidermal growth factor. Annu Rev Biochem. 1979;48:193–216. doi: 10.1146/annurev.bi.48.070179.001205. [DOI] [PubMed] [Google Scholar]
  5. Carpenter G., Lembach K. J., Morrison M. M., Cohen S. Characterization of the binding of 125-I-labeled epidermal growth factor to human fibroblasts. J Biol Chem. 1975 Jun 10;250(11):4297–4304. [PubMed] [Google Scholar]
  6. Cicurel L., Croce C. M. Somatic cell hybrids between mouse peritoneal macrophages and SV40-transformed human cells. III. Identification of surface antigens coded for by human chromosomes 7 and 17. J Immunol. 1977 Jun;118(6):1951–1956. [PubMed] [Google Scholar]
  7. Cuatrecasas P. Membrane receptors. Annu Rev Biochem. 1974;43(0):169–214. doi: 10.1146/annurev.bi.43.070174.001125. [DOI] [PubMed] [Google Scholar]
  8. Das M., Miyakawa T., Fox C. F., Pruss R. M., Aharonov A., Herschman H. R. Specific radiolabeling of a cell surface receptor for epidermal growth factor. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2790–2794. doi: 10.1073/pnas.74.7.2790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fabricant R. N., De Larco J. E., Todaro G. J. Nerve growth factor receptors on human melanoma cells in culture. Proc Natl Acad Sci U S A. 1977 Feb;74(2):565–569. doi: 10.1073/pnas.74.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Flier J. S., Kahn C. R., Roth J., Bar R. S. Antibodies that impair insulin receptor binding in an unusual diabetic syndrome with severe insulin resistance. Science. 1975 Oct 3;190(4209):63–65. doi: 10.1126/science.170678. [DOI] [PubMed] [Google Scholar]
  11. Heidmann T., Changeux J. P. Structural and functional properties of the acetylcholine receptor protein in its purified and membrane-bound states. Annu Rev Biochem. 1978;47:317–357. doi: 10.1146/annurev.bi.47.070178.001533. [DOI] [PubMed] [Google Scholar]
  12. Hollenberg M. D., Cuatrecasas P. Epidermal growth factor: receptors in human fibroblasts and modulation of action by cholera toxin. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2964–2968. doi: 10.1073/pnas.70.10.2964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Knowles B. B., Solter D., Trinchieri G., Maloney K. M., Ford S. R., Aden D. P. Complement-mediated antiserum cytotoxic reactions to human chromosome 7 coded antigen(s): immunoselection of rearranged human chromosome 7 in human-mouse somatic cell hybrids. J Exp Med. 1977 Feb 1;145(2):314–326. doi: 10.1084/jem.145.2.314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kucherlapati R., Tepper R., Granelli-Piperno A., Reich E. Modulation and mapping of a human plasminogen activator by cell fusion. Cell. 1978 Dec;15(4):1331–1340. doi: 10.1016/0092-8674(78)90058-2. [DOI] [PubMed] [Google Scholar]
  15. Rasheed S., Nelson-Rees W. A., Toth E. M., Arnstein P., Gardner M. B. Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer. 1974 Apr;33(4):1027–1033. doi: 10.1002/1097-0142(197404)33:4<1027::aid-cncr2820330419>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  16. Server A. C., Shooter E. M. Comparison of the arginine esteropeptidases associated with the nerve and epidermal growth factor. J Biol Chem. 1976 Jan 10;251(1):165–173. [PubMed] [Google Scholar]
  17. Todaro G. J., De Larco J. E., Cohen S. Transformation by murine and feline sarcoma viruses specifically blocks binding of epidermal growth factor to cells. Nature. 1976 Nov 4;264(5581):26–31. doi: 10.1038/264026a0. [DOI] [PubMed] [Google Scholar]
  18. Todaro G. J., De Larco J. E., Nissley S. P., Rechler M. M. MSA and EGF receptors on sarcoma virus transformed cells and human fibrosarcoma cells in culture. Nature. 1977 Jun 9;267(5611):526–528. doi: 10.1038/267526a0. [DOI] [PubMed] [Google Scholar]
  19. Weiss M. C., Green H. Human-mouse hybrid cell lines containing partial complements of human chromosomes and functioning human genes. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1104–1111. doi: 10.1073/pnas.58.3.1104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. de Larco J. E., Todaro G. J. Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci U S A. 1978 Aug;75(8):4001–4005. doi: 10.1073/pnas.75.8.4001. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES