Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jul;77(7):4310–4312. doi: 10.1073/pnas.77.7.4310

Sickle-cell hemoglobin: fall in osmotic pressure upon deoxygenation.

A R Hargens, L J Bowie, D Lent, S Carreathers, R M Peters, H T Hammel, P F Scholander
PMCID: PMC349823  PMID: 6933482

Abstract

Macromolecules such as hemoglobin exert both kinetic and matrix effects on osmotic pressure. The kinetic osmotic pressure of sickle-cell hemoglobin is lost upon deoxygenation at physiological erythrocyte concentrations. The non-kinetic or matrix component of osmotic pressure remains relatively unchanged. Loss of thermal-osmotic activity during deoxygenation occurs throughout a hemoglobin concentration range between 2.5 and 35 g/100 ml. Deoxygenation of sickle-cell hemoglobin causes aggregation such that the matrix effect is unchanged but the kinetic (van't Hoff) effect nearly vanishes. A loss of intracellular osmotic pressure during deoxygenation could dehydrate the erythrocyte sufficiently to promote more rapid sickle-cell hemoglobin aggregation. Subsequently, complete gelation of these aggregates could cause additional water loss and thrust the sickled cell into an irreversible cycle. The osmotic pressure of normal hemoglobin does not change appreciably during deoxygenation and is essentially the same as the osmotic pressure of oxygenated sickle-cell hemoglobin.

Full text

PDF
4310

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Briehl R. W., Ewert S. Effects of pH, 2,3-diphosphoglycerate and salts on gelation of sickle cell deoxyhemoglobin. J Mol Biol. 1973 Nov 5;80(3):445–458. doi: 10.1016/0022-2836(73)90415-4. [DOI] [PubMed] [Google Scholar]
  2. Crepeau R. H., Dykes G., Edelstein S. J. Structure of the fibers of sickle cell hemoglobin in the presence of 2,3-diphosphoglycerate. Biochem Biophys Res Commun. 1977 Mar 21;75(2):496–502. doi: 10.1016/0006-291x(77)91069-5. [DOI] [PubMed] [Google Scholar]
  3. Dean J., Schechter A. N. Sickle-cell anemia: molecular and cellular bases of therapeutic approaches (first of three parts). N Engl J Med. 1978 Oct 5;299(14):752–763. doi: 10.1056/NEJM197810052991405. [DOI] [PubMed] [Google Scholar]
  4. Fales F. W. Water distribution in blood during sickling of erythrocytes. Blood. 1978 Apr;51(4):703–709. [PubMed] [Google Scholar]
  5. Finch J. T., Perutz M. F., Bertles J. F., Döbler J. Structure of sickled erythrocytes and of sickle-cell hemoglobin fibers. Proc Natl Acad Sci U S A. 1973 Mar;70(3):718–722. doi: 10.1073/pnas.70.3.718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HARRIS J. W. Studies on the destruction of red blood cells. VIII. Molecular orientation in sickle cell hemoglobin solutions. Proc Soc Exp Biol Med. 1950 Oct;75(1):197–201. doi: 10.3181/00379727-75-18144. [DOI] [PubMed] [Google Scholar]
  7. Hargens A. R., Scholander P. F. Stretch mounting for osmotic membranes. Microvasc Res. 1969 Oct;1(4):417–419. doi: 10.1016/0026-2862(69)90020-x. [DOI] [PubMed] [Google Scholar]
  8. Hofrichter J., Ross P. D., Eaton W. A. Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4864–4868. doi: 10.1073/pnas.71.12.4864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. INGRAM V. M. A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature. 1956 Oct 13;178(4537):792–794. doi: 10.1038/178792a0. [DOI] [PubMed] [Google Scholar]
  10. Josephs R., Jarosch H. S., Edelstein S. J. Polymorphism of sickle cell hemoglobin fibers. J Mol Biol. 1976 Apr 15;102(3):409–426. doi: 10.1016/0022-2836(76)90324-7. [DOI] [PubMed] [Google Scholar]
  11. Masys D. R., Bromberg P. A., Balcerzak S. P. Red cells shrink during sickling. Blood. 1974 Dec;44(6):885–889. [PubMed] [Google Scholar]
  12. Ohtsuki M., White S. L., Zeitler E., Wellems T. E., Fuller S. D., Zwick M., Makinen M. W., Sigler P. B. Electron microscopy of fibers and discs of hemoglobin S having sixfold symmetry. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5538–5542. doi: 10.1073/pnas.74.12.5538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. PERUTZ M. F., MITCHISON J. M. State of haemoglobin in sickle-cell anaemia. Nature. 1950 Oct 21;166(4225):677–679. doi: 10.1038/166677a0. [DOI] [PubMed] [Google Scholar]
  14. Ross P. D., Hofrichter J., Eaton W. A. Calorimetric and optical characterization of sickle cell hemoglobin gelation. J Mol Biol. 1975 Aug 5;96(2):239–253. doi: 10.1016/0022-2836(75)90345-9. [DOI] [PubMed] [Google Scholar]
  15. SINGER K., SINGER L. Studies on abnormal hemoglobins. VIII. The gelling phenomenon of sickle cell hemoglobin: its biologic and diagnostic significance. Blood. 1953 Nov;8(11):1008–1023. [PubMed] [Google Scholar]
  16. Scholander P. F., Hargens A. R., Miller S. L. Negative pressure in the interstitial fluid of animals. Fluid tensions are spectacular in plants; in animals they are elusively small, but just as vital. Science. 1968 Jul 26;161(3839):321–328. doi: 10.1126/science.161.3839.321. [DOI] [PubMed] [Google Scholar]
  17. TOSTESON D. C., SHEA E., DARLING R. C. Potassium and sodium of red blood cells in sickle cell anemia. J Clin Invest. 1952 Apr;31(4):406–411. doi: 10.1172/JCI102623. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES