Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jul;77(7):4336–4339. doi: 10.1073/pnas.77.7.4336

Correlation between spontaneous metastatic potential, platelet-aggregating activity of cell surface extracts, and cell surface sialylation in 10 metastatic-variant derivatives of a rat renal sarcoma cell line.

E Pearlstein, P L Salk, G Yogeeswaran, S Karpatkin
PMCID: PMC349829  PMID: 6933486

Abstract

Several properties of 10 cell lines derived from the polyoma-induced PW20 Wistar-Furth rat renal sarcoma have been examined, including the ability of the tumor cells to metastasize spontaneously from subcutaneous sites in syngeneic hosts, the platelet-aggregating activity of material extracted by urea from the surface of cultured cells, the sialic acid content of the platelet-aggregating material, and the degree of sialylation of cell surface glycoconjugates in cultured cells. A correlation has been observed among all of these parameters. The results suggest a possible link between the degree of cell surface sialylation of tumor cells, their ability to aggregate platelets, and their ability to metastasize.

Full text

PDF
4336

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gasic G. J., Boettiger D., Catalfamo J. L., Gasic T. B., Stewart G. J. Aggregation of platelets and cell membrane vesiculation by rat cells transformed in vitro by Rous sarcoma virus. Cancer Res. 1978 Sep;38(9):2950–2955. [PubMed] [Google Scholar]
  2. Gasic G. J., Gasic T. B., Galanti N., Johnson T., Murphy S. Platelet-tumor-cell interactions in mice. The role of platelets in the spread of malignant disease. Int J Cancer. 1973 May;11(3):704–718. doi: 10.1002/ijc.2910110322. [DOI] [PubMed] [Google Scholar]
  3. Gasic G. J., Gasic T. B., Jimenez S. A. Effects of trypsin on the platelet-aggregating activity of mouse tumor cells. Thromb Res. 1977 Jan;10(1):33–45. doi: 10.1016/0049-3848(77)90079-2. [DOI] [PubMed] [Google Scholar]
  4. Gasic G. J., Gasic T. B., Stewart C. C. Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci U S A. 1968 Sep;61(1):46–52. doi: 10.1073/pnas.61.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hilgard P. The role of blood platelets in experimental metastases. Br J Cancer. 1973 Nov;28(5):429–435. doi: 10.1038/bjc.1973.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jones D. S., Wallace A. C., Fraser E. E. Sequence of events in experimental metastases of Walker 256 tumor: light, immunofluorescent, and electron microscopic observations. J Natl Cancer Inst. 1971 Mar;46(3):493–504. [PubMed] [Google Scholar]
  7. Karpatkin S. Heterogeneity of human platelets. VI. Correlation of platelet function with platelet volume. Blood. 1978 Feb;51(2):307–316. [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Nachman R. L., Weksler B., Ferris B. Characterization of human platelet vascular permeability-enhancing activity. J Clin Invest. 1972 Mar;51(3):549–556. doi: 10.1172/JCI106843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pearlstein E., Cooper L. B., Karpatkin S. Extraction and characterization of a platelet-aggregating material from SV40-transformed mouse 3T3 fibroblasts. J Lab Clin Med. 1979 Feb;93(2):332–344. [PubMed] [Google Scholar]
  11. Ray P. K. Bacterial neuraminidase and altered immunological behavior of treated mammalian cells. Adv Appl Microbiol. 1977;21:227–267. doi: 10.1016/s0065-2164(08)70043-1. [DOI] [PubMed] [Google Scholar]
  12. Roos E., Dingemans K. P. Mechanisms of metastasis. Biochim Biophys Acta. 1979 Feb 4;560(1):135–166. doi: 10.1016/0304-419x(79)90005-2. [DOI] [PubMed] [Google Scholar]
  13. Sindelar W. F., Tralka T. S., Ketcham A. S. Electron microscopic observations on formation of pulmonary metastases. J Surg Res. 1975 Feb;18(2):137–161. doi: 10.1016/0022-4804(75)90010-4. [DOI] [PubMed] [Google Scholar]
  14. Sinha B. K., Goldenberg G. J. The effect of trypsin and neuraminidase on the circulation and organ distribution of tumor cells. Cancer. 1974 Dec;34(6):1956–1961. doi: 10.1002/1097-0142(197412)34:6<1956::aid-cncr2820340614>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
  15. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  16. WEISS L. Studies on cellular adhesion in tissue-culture. V. Some effects of enzymes on cell-detachment. Exp Cell Res. 1963 May;30:509–520. doi: 10.1016/0014-4827(63)90327-6. [DOI] [PubMed] [Google Scholar]
  17. Warren B. A., Vales O. The adhesion of thromboplastic tumour emboli to vessel walls in vivo. Br J Exp Pathol. 1972 Jun;53(3):301–313. [PMC free article] [PubMed] [Google Scholar]
  18. Wexler H. Accurate identification of experimental pulmonary metastases. J Natl Cancer Inst. 1966 Apr;36(4):641–645. doi: 10.1093/jnci/36.4.641. [DOI] [PubMed] [Google Scholar]
  19. Yogeeswaran G., Sebastian H., Stein B. S. Cell surface sialylation of glycoproteins and glycosphingolipids in cultured metastatic variant RNA-virus transformed non-producer BALB/c 3T3 cell lines. Int J Cancer. 1979 Aug;24(2):193–202. doi: 10.1002/ijc.2910240211. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES