Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Aug;77(8):4439–4443. doi: 10.1073/pnas.77.8.4439

Mapping of anion binding sites on cytochrome c by differential chemical modification of lysine residues.

N Osheroff, D L Brautigan, E Margoliash
PMCID: PMC349859  PMID: 6254024

Abstract

The carbonate binding site on horse cytochrome c was mapped by comparing the yields of carboxydinitrophenyl-cytochromes c, each with a single carboxydinitrophenyl-substituted lysine residue per molecule, when the modification reaction was carried out in the presence and absence of carbonate. The site is located on the "left surface" of the protein and consists of lysine residues 72 and/or 73 as well as 86 and/or 87 (Carbonate Site). Although one of the binding sites for phosphate on cytochrome c (Phosphat Site I) is located near the carbonate site, the sites are distinctly different since carbonate does not displace bound phosphate, as monitored by 31P NMR. Furthermore, citrate interacts with Phosphate Site I with high affinity, whereas chloride, acetate, borate, and cacodylate have a much lower affinity for this site, if they bind to it at all. The affinity of phosphate for Phosphate Site I (KD = 2 X 10(-4) M) is at least 1 order of magnitude higher than it is for other sites of interaction.

Full text

PDF
4439

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson T., Thulin E., Forsén S. Ion binding to cytochrome c studied by nuclear magnetic quadrupole relaxation. Biochemistry. 1979 Jun 12;18(12):2487–2493. doi: 10.1021/bi00579a008. [DOI] [PubMed] [Google Scholar]
  2. Barlow G. H., Margoliash E. Electrophoretic behavior of mammalian-type cytochromes c. J Biol Chem. 1966 Apr 10;241(7):1473–1477. [PubMed] [Google Scholar]
  3. Brautigan D. L., Ferguson-Miller S., Margoliash E. Definition of cytochrome c binding domains by chemical modification. I. Reaction with 4-chloro-3,5-dinitrobenzoate and chromatographic separation of singly substituted derivatives. J Biol Chem. 1978 Jan 10;253(1):130–139. [PubMed] [Google Scholar]
  4. Brautigan D. L., Ferguson-Miller S., Margoliash E. Mitochondrial cytochrome c: preparation and activity of native and chemically modified cytochromes c. Methods Enzymol. 1978;53:128–164. doi: 10.1016/s0076-6879(78)53021-8. [DOI] [PubMed] [Google Scholar]
  5. Brautigan D. L., Ferguson-Miller S., Tarr G. E., Margoliash E. Definition of cytochrome c binding domains by chemical modification. II. Identification and properties of singly substituted carboxydinitrophenyl cytochromes c at lysines 8, 13, 22, 27, 39, 60, 72, 87, and 99. J Biol Chem. 1978 Jan 10;253(1):140–148. [PubMed] [Google Scholar]
  6. Dethmers J. K., Ferguson-Miller S., Margoliash E. Comparison of yeast and beef cytochrome c oxidases. Kinetics and binding of horse, fungal, and Euglena cytochromes c. J Biol Chem. 1979 Dec 10;254(23):11973–11981. [PubMed] [Google Scholar]
  7. Ferguson-Miller S., Brautigan D. L., Margoliash E. Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase. J Biol Chem. 1976 Feb 25;251(4):1104–1115. [PubMed] [Google Scholar]
  8. Ferguson-Miller S., Brautigan D. L., Margoliash E. Definition of cytochrome c binding domains by chemical modification. III. Kinetics of reaction of carboxydinitrophenyl cytochromes c with cytochrome c oxidase. J Biol Chem. 1978 Jan 10;253(1):149–159. [PubMed] [Google Scholar]
  9. HUGHES T. R., KLOTZ I. M. Analysis of metal-protein complexes. Methods Biochem Anal. 1956;3:265–299. doi: 10.1002/9780470110195.ch9. [DOI] [PubMed] [Google Scholar]
  10. Kang C. H., Brautigan D. L., Osheroff N., Margoliash E. Definitaion of cytochrome c binding domains by chemical modification. Reaction of carboxydinitrophenyl- and trinitrophenyl-cytochromes c with baker's yeast cytochrome c peroxidase. J Biol Chem. 1978 Sep 25;253(18):6502–6510. [PubMed] [Google Scholar]
  11. Kang C. H., Ferguson-Miller S., Margoliash E. Steady state kinetics and binding of eukaryotic cytochromes c with yeast cytochrome c peroxidase. J Biol Chem. 1977 Feb 10;252(3):919–926. [PubMed] [Google Scholar]
  12. Koppenol W. H., Vroonland C. A., Braams R. The electric potential field around cytochrome c and the effect of ionic strength on reaction rates of horse cytochrome c. Biochim Biophys Acta. 1978 Sep 7;503(3):499–508. doi: 10.1016/0005-2728(78)90149-4. [DOI] [PubMed] [Google Scholar]
  13. Margalit R., Schejter A. Cytochrome c: a thermodynamic study of relationships among oxidation state, ion-binding and structural parameters. 2. Ion-binding linked to oxidation state. Eur J Biochem. 1973 Feb 1;32(3):500–505. doi: 10.1111/j.1432-1033.1973.tb02634.x. [DOI] [PubMed] [Google Scholar]
  14. Margalit R., Schejter A. Cytochrome c: a thermodynamic study of the relationships among oxidation state, ion-binding and structural parameters. 1. The effects of temperature, pH and electrostatic media on the standard redox potential of cytochrome c. Eur J Biochem. 1973 Feb 1;32(3):492–499. doi: 10.1111/j.1432-1033.1973.tb02633.x. [DOI] [PubMed] [Google Scholar]
  15. Margoliash E., Barlow G. H., Byers V. Differential binding properties of cytochrome c: possible relevance for mitochondrial ion transport. Nature. 1970 Nov 21;228(5273):723–726. doi: 10.1038/228723a0. [DOI] [PubMed] [Google Scholar]
  16. Miller W. G., Cusanovich M. A. Electron transport by C-type cytochromes. I. The reaction of horse heart cytochrome c with anionic reductants. Biophys Struct Mech. 1975 Feb 19;1(2):97–111. [PubMed] [Google Scholar]
  17. Morton R. A., Breskvar K. Ion binding to lysine-modified derivatives of cytochrome c. Can J Biochem. 1977 Feb;55(2):146–151. doi: 10.1139/o77-023. [DOI] [PubMed] [Google Scholar]
  18. Nicholls P. Cytochrome c binding to enzymes and membranes. Biochim Biophys Acta. 1974 Dec 30;346(3-4):261–310. doi: 10.1016/0304-4173(74)90003-2. [DOI] [PubMed] [Google Scholar]
  19. Osheroff N., Borden D., Koppenol W. H., Margoliash E. Electrostatic interactions in cytochrome c. The role of interactions between residues 13 and 90 and residues 79 and 47 in stabilizing the heme crevice structure. J Biol Chem. 1980 Feb 25;255(4):1689–1697. [PubMed] [Google Scholar]
  20. Osheroff N., Brautigan D. L., Margoliash E. Definition of enzymic interaction domains on cytochrome c. Purification and activity of singly substituted carboxydinitrophenyl-lysine 7, 25, 73, 86, and 99 cytochromes c. J Biol Chem. 1980 Sep 10;255(17):8245–8251. [PubMed] [Google Scholar]
  21. Peterman B. F., Morton R. A. The effect of binding ions on the oxidation of horse heart ferrocytochrome c. Can J Biochem. 1979 May;57(5):372–377. doi: 10.1139/o79-047. [DOI] [PubMed] [Google Scholar]
  22. Schejter A., Margalit R. The redox potential of cytochrome c: Ion binding and oxidation state as linked functions. FEBS Lett. 1970 Oct 5;10(3):179–181. doi: 10.1016/0014-5793(70)80447-1. [DOI] [PubMed] [Google Scholar]
  23. Stellwagen E., Shulman R. G. Nuclear magnetic resonance study of exchangeable protons in ferrocytochrome c. J Mol Biol. 1973 Apr 25;75(4):683–698. doi: 10.1016/0022-2836(73)90301-x. [DOI] [PubMed] [Google Scholar]
  24. Stellwagen E., Shulman R. G. Nuclear magnetic resonance study of the rate of electron transfer between cytochrome c and iron hexacyanides. J Mol Biol. 1973 Nov 15;80(4):559–573. doi: 10.1016/0022-2836(73)90197-6. [DOI] [PubMed] [Google Scholar]
  25. Swanson R., Trus B. L., Mandel N., Mandel G., Kallai O. B., Dickerson R. E. Tuna cytochrome c at 2.0 A resolution. I. Ferricytochrome structure analysis. J Biol Chem. 1977 Jan 25;252(2):759–775. [PubMed] [Google Scholar]
  26. Taborsky G. Effects of phosphate and other anions on the reaction between ferrous ion and cytochrome c. Biochemistry. 1972 Feb 29;11(5):729–734. doi: 10.1021/bi00755a009. [DOI] [PubMed] [Google Scholar]
  27. Taborsky G., McCollum K. Phosphate binding by cytochrome c. Specific binding site involved in the formation and reactivity of a complex of ferricytochrome c, ferrous ion, and phosphate. J Biol Chem. 1979 Aug 10;254(15):7069–7075. [PubMed] [Google Scholar]
  28. Wada K., Okunuki K. Studies on chemically modified cytochrome c. II. The trinitrophenylated cytochrome c. J Biochem. 1969 Aug;66(2):249–262. doi: 10.1093/oxfordjournals.jbchem.a129141. [DOI] [PubMed] [Google Scholar]
  29. YAMAZAKI I. The reduction of cytochrome c by enzyme-generated ascorbic free radical. J Biol Chem. 1962 Jan;237:224–229. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES