Abstract
The binding of many opiates and enkephalins to enkephalin (delta) and morphine (mu) receptors was compared by using three different binding assays: (i) 125I-labeled[D-Ala2, D-Leu5]enkephalin or 125I-labeled[D-Ala2,N-Me-Phe4,Met(O)5ol]-enkephalin to brain membranes; (ii) [3H]ethylketocyclazocine to brain membranes; and (iii) [3H]diprenorphine and [3H]naloxone to neuroblastoma cell and brain membranes, respectively. According to their relative binding potencies and the effects of Na+ and GTP on the binding to these two receptors, opiates and enkephalins can be classified into seven classes: (i) morphine-type mu agonists; (ii) enkephalin-type delta agonists; (iii) mixed agonists-antagonists; (iv) putative kappa agonists; (v) putative sigma agonists; (vi) nalorphine-type antagonists; and (vii) opiate antagonists. Studies with [3H]ethylketocyclazocine do not reveal specific kappa receptors distinct from those already described that bind morphine and enkephalins. The benzomorphan analogs ketocyclazocine and ethylketocyclazocine (putative kappa agonists) and N-allylnormetazocine (putative sigma agonist) bind to morphine (mu) and enkephalin (delta) receptors with similarly high affinities. The potency of putative kappa agonists, measured by competition with binding of the 3H-labeled antagonist, is greatly reduced by the presence of Na+ and GTP; the "Na+ and GTP ratios" are similar to those of morphine and enkephalins. However, Na+ and GTP greatly decrease the potency of binding of putative sigma agonists to enkephalin receptors but only slightly decrease the binding to morphine receptors. These data suggest that putative kappa agonists have agonistic activity toward both receptors, whereas putative sigma agonists behave as agonists for enkephalin receptors but have antagonist activity for morphine receptors. Mixed agonist-antagonists also show smaller difference in affinity to both receptors. These findings may have important implications for understanding the differences in the pharmacological effects of these drugs.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blume A. J. Interaction of ligands with the opiate receptors of brain membranes: regulation by ions and nucleotides. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1713–1717. doi: 10.1073/pnas.75.4.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang K. J., Cooper B. R., Hazum E., Cuatrecasas P. Multiple opiate receptors: different regional distribution in the brain and differential binding of opiates and opioid peptides. Mol Pharmacol. 1979 Jul;16(1):91–104. [PubMed] [Google Scholar]
- Chang K. J., Cuatrecasas P. Multiple opiate receptors. Enkephalins and morphine bind to receptors of different specificity. J Biol Chem. 1979 Apr 25;254(8):2610–2618. [PubMed] [Google Scholar]
- Chang K. J., Miller R. J., Cuatrecasas P. Interaction of enkephalin with opiate receptors in intact cultured cells. Mol Pharmacol. 1978 Nov;14(6):961–970. [PubMed] [Google Scholar]
- Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
- Childers S. R., Creese I., Snowman A. M., Synder S. H. Opiate receptor binding affected differentially by opiates and opioid peptides. Eur J Pharmacol. 1979 Apr 1;55(1):11–18. doi: 10.1016/0014-2999(79)90142-0. [DOI] [PubMed] [Google Scholar]
- Childers S. R., Snyder S. H. Guanine nucleotides differentiate agonist and antagonist interactions with opiate receptors. Life Sci. 1978 Aug 21;23(7):759–761. doi: 10.1016/0024-3205(78)90077-2. [DOI] [PubMed] [Google Scholar]
- Frenk H., McCarty B. C., Liebeskind J. C. Different brain areas mediate the analgesic and epileptic properties of enkephalin. Science. 1978 Apr 21;200(4339):335–337. doi: 10.1126/science.204998. [DOI] [PubMed] [Google Scholar]
- Frenk H., Urca G., Liebeskind J. C. Epileptic properties of leucine- and methionine-enkephalin: comparison with morphine and reversibility by naloxone. Brain Res. 1978 May 26;147(2):327–337. doi: 10.1016/0006-8993(78)90843-0. [DOI] [PubMed] [Google Scholar]
- Gilbert P. E., Martin W. R. The effects of morphine and nalorphine-like drugs in the nondependent, morphine-dependent and cyclazocine-dependent chronic spinal dog. J Pharmacol Exp Ther. 1976 Jul;198(1):66–82. [PubMed] [Google Scholar]
- Gráf L., Miglécz E., Bajusz S., Székely J. I. Met-enkephalin attenuates morphine tolerance in rats. Eur J Pharmacol. 1979 Oct 1;58(3):345–346. doi: 10.1016/0014-2999(79)90488-6. [DOI] [PubMed] [Google Scholar]
- Hutchinson M., Kosterlitz H. W., Leslie F. M., Waterfield A. A. Assessment in the guinea-pig ileum and mouse vas deferens of benzomorphans which have strong antinociceptive activity but do not substitute for morphine in the dependent monkey. Br J Pharmacol. 1975 Dec;55(4):541–546. doi: 10.1111/j.1476-5381.1975.tb07430.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kosterlitz H. W., Waterfield A. A. In vitro models in the study of structure-activity relationships of narcotic analgesics. Annu Rev Pharmacol. 1975;15:29–47. doi: 10.1146/annurev.pa.15.040175.000333. [DOI] [PubMed] [Google Scholar]
- Lord J. A., Waterfield A. A., Hughes J., Kosterlitz H. W. Endogenous opioid peptides: multiple agonists and receptors. Nature. 1977 Jun 9;267(5611):495–499. doi: 10.1038/267495a0. [DOI] [PubMed] [Google Scholar]
- Martin W. R., Eades C. G., Thompson J. A., Huppler R. E., Gilbert P. E. The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther. 1976 Jun;197(3):517–532. [PubMed] [Google Scholar]
- Pert C. B., Snyder S. H. Opiate receptor: demonstration in nervous tissue. Science. 1973 Mar 9;179(4077):1011–1014. doi: 10.1126/science.179.4077.1011. [DOI] [PubMed] [Google Scholar]
- Pickworth W. B., Sharpe L. G. EEG-behavioral dissociation after morphine-and cyclazocine-like drugs in the dog: further evidence for two opiate receptors. Neuropharmacology. 1979 Jul;18(7):617–622. doi: 10.1016/0028-3908(79)90114-x. [DOI] [PubMed] [Google Scholar]
- Stein L., Belluzzi J. D. Brain endorphins and the sense of well-being: a psychobiological hypothesis. Adv Biochem Psychopharmacol. 1978;18:299–311. [PubMed] [Google Scholar]
- Vaught J. L., Takemori A. E. A further characterization of the differential effects of leucine enkephalin, methionine enkephalin and their analogs on morphine-induced analgesia. J Pharmacol Exp Ther. 1979 Nov;211(2):280–283. [PubMed] [Google Scholar]
