Abstract
The primary structure of the T4 single-stranded DNA-binding protein coded by gene 32 has been determined by manual and autoated sequencing of peptides derived from partial proteolysis, cyanogen bromide cleavage, and digestion with trypsin, chymotrypsin, and staphylococcal protease. Tryptic digestion of citraconylated or succinylated gene 32 protein yields five peptides containing 4, 27, 42, 65, and 163 residues, which can be separated by Sephadex chromatography. Each of the tryptic peptides was subjected to automated sequencing and, if necessary, more extensive cleavage. The intact protein contains 301 amino acids, has a molecular weight of 33,487, and can be specifically cleaved at lysines 21 and 253 by limited trypsin digestion. Previous studies have shown that the "B" region (residues 1-21), which has a charge of +4, is important for the protein-protein interactions involved in gene 32 protein self-association and cooperaive binding to single-stranded DNA. The "A" region (residues 254-301) has been implicated in controlling the helix-destabilizing "activity" of gene 32 protein and in interacting with other T4 DNA replication proteins. The A region has a charge of -10 and, in addition, contains two unusual stretches of four serine residues separated by glycine 284. The region between positions 73 and 115 contains 75% of the tyrosine residues and may be important for DNA binding.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alberts B. M., Amodio F. J., Jenkins M., Gutmann E. D., Ferris F. L. Studies with DNA-cellulose chromatography. I. DNA-binding proteins from Escherichia coli. Cold Spring Harb Symp Quant Biol. 1968;33:289–305. doi: 10.1101/sqb.1968.033.01.033. [DOI] [PubMed] [Google Scholar]
- Alberts B. M., Frey L. T4 bacteriophage gene 32: a structural protein in the replication and recombination of DNA. Nature. 1970 Sep 26;227(5265):1313–1318. doi: 10.1038/2271313a0. [DOI] [PubMed] [Google Scholar]
- Alberts B., Frey L., Delius H. Isolation and characterization of gene 5 protein of filamentous bacterial viruses. J Mol Biol. 1972 Jul 14;68(1):139–152. doi: 10.1016/0022-2836(72)90269-0. [DOI] [PubMed] [Google Scholar]
- Alberts B., Sternglanz R. Recent excitement in the DNA replication problem. Nature. 1977 Oct 20;269(5630):655–661. doi: 10.1038/269655a0. [DOI] [PubMed] [Google Scholar]
- Anderson R. A., Coleman J. E. Physiochemical properties of DNA binding proteins: gene 32 protein of T4 and Escherichia coli unwinding protein. Biochemistry. 1975 Dec 16;14(25):5485–5491. doi: 10.1021/bi00696a017. [DOI] [PubMed] [Google Scholar]
- Breschkin A. M., Mosig G. Multiple interactions of a DNA-binding protein in vivo. I. Gene 32 mutations of phage T4 inactivate different steps in DNA replication and recombination. J Mol Biol. 1977 May 15;112(2):279–294. doi: 10.1016/s0022-2836(77)80144-7. [DOI] [PubMed] [Google Scholar]
- Breschkin A. M., Mosig G. Multiple interactions of a DNA-binding protein in vivo. II. Effects of host mutations on DNA replication of phage T4 gene 32 mutants. J Mol Biol. 1977 May 15;112(2):295–308. doi: 10.1016/s0022-2836(77)80145-9. [DOI] [PubMed] [Google Scholar]
- Carroll R. B., Neet K., Goldthwait D. A. Studies of the self-association of bacteriophage T4 gene 32 protein by equilibrium sedimentation. J Mol Biol. 1975 Jan 25;91(3):275–291. doi: 10.1016/0022-2836(75)90380-0. [DOI] [PubMed] [Google Scholar]
- Chiu W., Hosoda J. Crystallization of preliminary electron diffraction study to 3.7 A of DNA helix-destabilizing protein gp32*I. J Mol Biol. 1978 Jun 15;122(1):103–107. doi: 10.1016/0022-2836(78)90110-9. [DOI] [PubMed] [Google Scholar]
- Delius H., Mantell N. J., Alberts B. Characterization by electron microscopy of the complex formed between T4 bacteriophage gene 32-protein and DNA. J Mol Biol. 1972 Jun 28;67(3):341–350. doi: 10.1016/0022-2836(72)90454-8. [DOI] [PubMed] [Google Scholar]
- Greve J., Maestre M. F., Moise H., Hosoda J. Circular dichroism studies of the interaction of a limited hydrolysate of T4 gene 32 protein with T4 DNA and poly[d(A-T)].poly[d(A-T)]. Biochemistry. 1978 Mar 7;17(5):893–898. doi: 10.1021/bi00598a023. [DOI] [PubMed] [Google Scholar]
- Herrick G., Alberts B. Purification and physical characterization of nucleic acid helix-unwinding proteins from calf thymus. J Biol Chem. 1976 Apr 10;251(7):2124–2132. [PubMed] [Google Scholar]
- Hosoda J., Moise H. Purification and physicochemical properties of limited proteolysis products of T4 helix destabilizing protein (gene 32 protein). J Biol Chem. 1978 Oct 25;253(20):7547–7558. [PubMed] [Google Scholar]
- Huberman J. A., Kornberg A., Alberts B. M. Stimulation of T4 bacteriophage DNA polymerase by the protein product of T4 gene 32. J Mol Biol. 1971 Nov 28;62(1):39–52. doi: 10.1016/0022-2836(71)90129-x. [DOI] [PubMed] [Google Scholar]
- Janatova J., Fuller J. K., Hunter M. J. The heterogeneity of bovine albumin with respect to sulfhydryl and dimer content. J Biol Chem. 1968 Jul 10;243(13):3612–3622. [PubMed] [Google Scholar]
- Jensen D. E., Kelly R. C., von Hippel P. H. DNA "melting" proteins. II. Effects of bacteriophage T4 gene 32-protein binding on the conformation and stability of nucleic acid structures. J Biol Chem. 1976 Nov 25;251(22):7215–7228. [PubMed] [Google Scholar]
- Kelly R. C., Jensen D. E., von Hippel P. H. DNA "melting" proteins. IV. Fluorescence measurements of binding parameters for bacteriophage T4 gene 32-protein to mono-, oligo-, and polynucleotides. J Biol Chem. 1976 Nov 25;251(22):7240–7250. [PubMed] [Google Scholar]
- Moise H., Hosoda J. T4 gene 32 protein model for control of activity at replication fork. Nature. 1976 Feb 12;259(5543):455–458. doi: 10.1038/259455a0. [DOI] [PubMed] [Google Scholar]
- Mosig G., Berquist W., Bock S. Multiple interactions of a DNA-binding protein in vivo. III. Phage T4 gene-32 mutations differentially affect insertion-type recombination and membrane properties. Genetics. 1977 May;86(1):5–23. doi: 10.1093/genetics/86.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mosig G., Bock S. Gene 32 protein of bacteriophage T4 moderates the activities of the T4 gene 46/47-controlled nuclease and of the Escherichia coli RecBC nuclease in vivo. J Virol. 1976 Mar;17(3):756–761. doi: 10.1128/jvi.17.3.756-761.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mosig G., Breschkin A. M. Genetic evidence for an additional function of phage T4 gene 32 protein: interaction with ligase. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1226–1230. doi: 10.1073/pnas.72.4.1226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Offord R. E. Electrophoretic mobilities of peptides on paper and their use in the determination of amide groups. Nature. 1966 Aug 6;211(5049):591–593. doi: 10.1038/211591a0. [DOI] [PubMed] [Google Scholar]
- Reuben R. C., Gefter M. L. A DNA-binding protein induced by bacteriophage T7. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1846–1850. doi: 10.1073/pnas.70.6.1846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sigal N., Delius H., Kornberg T., Gefter M. L., Alberts B. A DNA-unwinding protein isolated from Escherichia coli: its interaction with DNA and with DNA polymerases. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3537–3541. doi: 10.1073/pnas.69.12.3537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smithies O., Gibson D., Fanning E. M., Goodfliesh R. M., Gilman J. G., Ballantyne D. L. Quantitative procedures for use with the Edman-Begg sequenator. Partial sequences of two unusual immunoglobulin light chains, Rzf and Sac. Biochemistry. 1971 Dec 21;10(26):4912–4921. doi: 10.1021/bi00802a013. [DOI] [PubMed] [Google Scholar]
- Spicer E. K., Williams K. R., Konigsberg W. H. T4 gene 32 protein trypsin-generated fragments. Fluorescence measurement of DNA-binding parameters. J Biol Chem. 1979 Jul 25;254(14):6433–6436. [PubMed] [Google Scholar]
- Tomita M., Furthmayr H., Marchesi V. T. Primary structure of human erythrocyte glycophorin A. Isolation and characterization of peptides and complete amino acid sequence. Biochemistry. 1978 Oct 31;17(22):4756–4770. doi: 10.1021/bi00615a025. [DOI] [PubMed] [Google Scholar]
- Tomizawa J. I., Anraku N., Iwama Y. Molecular mechanisms of genetic recombination in bacteriophage. VI. A mutant defective in the joining of DNA molecules. J Mol Biol. 1966 Nov 14;21(2):247–253. doi: 10.1016/0022-2836(66)90095-7. [DOI] [PubMed] [Google Scholar]
- Williams K. R., Konigsberg W. Structural changes in the T4 gene 32 protein induced by DNA polynucleotides. J Biol Chem. 1978 Apr 10;253(7):2463–2470. [PubMed] [Google Scholar]
- Williams K. R., Sillerud L. O., Schafer D. E., Konigsberg W. H. DNA binding properties of the T4 DNA helix-destabilizing protein. A calorimetric study. J Biol Chem. 1979 Jul 25;254(14):6426–6432. [PubMed] [Google Scholar]
- Wu J. R., Yeh Y. C. Requirement of a functional gene 32 product of bacteriophage T4 in UV, repair. J Virol. 1973 Oct;12(4):758–765. doi: 10.1128/jvi.12.4.758-765.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]