Abstract
The structure of the complex between the proteolytic enzyme carboxypeptidase A (peptidyl-L-amino-acid hydrolase, EC 3.4.17.1) and the 39-amino-acid carboxypeptidase A inhibitor from potatoes has been determined at 2.5-A resolution. A combination of multiple isomorphous replacement, molecular replacement, and noncrystallographic symmetry averaging techniques was used to solve the structure. The chain trace of the inhibitor and details of the binding interactions in the complex are described. A surprising aspect of the complex is that the carboxy-terminal peptide bond of the inhibitor has been hydrolyzed, and the carboxy-terminal glycine is trapped in the binding pocket of carboxypeptidase A. Consequently, the complex resembles a stage in the catalytic mechanism after hydrolysis of the peptide bond. The ring of tyrosine-248, which is known to undergo large conformational changes upon substrate binding, is in the "down" position and interacts with the inhibitor in the complex.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abramowitz N., Schechter I., Berger A. On the size of the active site in proteases. II. Carboxypeptidase-A. Biochem Biophys Res Commun. 1967 Dec 29;29(6):862–867. doi: 10.1016/0006-291x(67)90299-9. [DOI] [PubMed] [Google Scholar]
- Hass G. M., Ako H., Grahn D. T., Neurath H. Carboxypeptidase inhibitor from potatoes. The effects of chemical modifications on inhibitory activity. Biochemistry. 1976 Jan 13;15(1):93–100. doi: 10.1021/bi00646a015. [DOI] [PubMed] [Google Scholar]
- Hass G. M., Nau H., Biemann K., Grahn D. T., Ericsson L. H., Neurath H. The amino acid sequence of a carboxypeptidase inhibitor from potatoes. Biochemistry. 1975 Mar 25;14(6):1334–1342. doi: 10.1021/bi00677a036. [DOI] [PubMed] [Google Scholar]
- Johansen J. T., Vallee B. L. Conformations of arsanilazotyrosine-248 carboxypeptidase A alpha, beta, gamma, comparison of crystals and solution. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2006–2010. doi: 10.1073/pnas.70.7.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leary T. R., Grahn D. T., Neurath H., Hass G. M. Structure of potato carboxypeptidase inhibitor: disulfide pairing and exposure of aromatic residues. Biochemistry. 1979 May 29;18(11):2252–2256. doi: 10.1021/bi00578a018. [DOI] [PubMed] [Google Scholar]
- Lipscomb W. N. Carboxypeptidase A mechanisms. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3875–3878. doi: 10.1073/pnas.77.7.3875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipscomb W. N. Enzymatic activities of carobxypeptidase A's in solution and in crystals. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3797–3801. doi: 10.1073/pnas.70.12.3797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipscomb W. N., Hartsuck J. A., Reeke G. N., Jr, Quiocho F. A., Bethge P. H., Ludwig M. L., Steitz T. A., Muirhead H., Coppola J. C. The structure of carboxypeptidase A. VII. The 2.0-angstrom resolution studies of the enzyme and of its complex with glycyltyrosine, and mechanistic deductions. Brookhaven Symp Biol. 1968 Jun;21(1):24–90. [PubMed] [Google Scholar]
- Muirhead H., Cox J. M., Mazzarella L., Perutz M. F. Structure and function of haemoglobin. 3. A three-dimensional fourier synthesis of human deoxyhaemoglobin at 5.5 Angstrom resolution. J Mol Biol. 1967 Aug 28;28(1):117–156. doi: 10.1016/s0022-2836(67)80082-2. [DOI] [PubMed] [Google Scholar]
- Rees D. C., Honzatko R. B., Lipscomb W. N. Structure of an actively exchanging complex between carboxypeptidase A and a substrate analogue. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3288–3291. doi: 10.1073/pnas.77.6.3288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rees D. C., Lipscomb W. N. Structure of potato inhibitor complex of carboxypeptidase A at 5.5-A resolution. Proc Natl Acad Sci U S A. 1980 Jan;77(1):277–280. doi: 10.1073/pnas.77.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rühlmann A., Kukla D., Schwager P., Bartels K., Huber R. Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. Crystal structure determination and stereochemistry of the contact region. J Mol Biol. 1973 Jul 5;77(3):417–436. doi: 10.1016/0022-2836(73)90448-8. [DOI] [PubMed] [Google Scholar]
- Sealock R. W., Laskowski M., Jr Enzymatic replacement of the arginyl by a lysyl residue in the reactive site of soybean trypsin inhibitor. Biochemistry. 1969 Sep;8(9):3703–3710. doi: 10.1021/bi00837a032. [DOI] [PubMed] [Google Scholar]
- Spilburg C. A., Bethune J. L., Valee B. L. Kinetic properties of crystalline enzymes. Carboxypeptidase A. Biochemistry. 1977 Mar 22;16(6):1142–1150. doi: 10.1021/bi00625a018. [DOI] [PubMed] [Google Scholar]
- Wright C. S. The crystal structure of wheat germ agglutinin at 2-2 A resolution. J Mol Biol. 1977 Apr 25;111(4):439–457. doi: 10.1016/s0022-2836(77)80063-6. [DOI] [PubMed] [Google Scholar]