Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Aug;77(8):4760–4763. doi: 10.1073/pnas.77.8.4760

Cell density determines epithelial migration in culture.

P Rosen, D S Misfeldt
PMCID: PMC349926  PMID: 6933523

Abstract

The dog kidney epithelial cell line (MDCK) has been shown to exhibit a density-correlated inhibition of growth at approxmately 6.6 X 10(5) cells per cm2. When a confluent monolayer at its maximal density was wounded by removal of a wide swath of cells, migration of the cell sheet into the denuded area occurred. Precise measurements of the rate of migration for 5 day showed that the cells accelerated at a uniform rate of 0.24 micrometer . hr-2 and, by extrapolation, possessed an apparent initial velocity of 2.8 micrometer . hr-1 at the time of wounding. The apparent initial velocity was considered to be the result of a brief (< 10 hr) and rapid acceleration dependent on cell density. To verify this, wounds were made at different densities below the maximum. In these experiments, the cells did not migrate until a "threshold" density of 2.0 X 10(5) cells per cm2 was reached regardless of the density at the time of wounding. At the threshold density, the cell sheet began to accelerate at the previously measured rate (0.24 micrometer . hr-2). Any increase in density by cell division was balanced by cell migration, so that the same threshold density was maintained by the migrating cells. Each migrating cell sustained the movement of the cell sheet at a constant rate of acceleration. It is proposed that an acceleration is, in general, characteristic of the vectorial movement of an epithelial cell sheet.

Full text

PDF
4760

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abercrombie M., Heaysman J. E., Pegrum S. M. The locomotion of fibroblasts in culture. I. Movements of the leading edge. Exp Cell Res. 1970 Mar;59(3):393–398. doi: 10.1016/0014-4827(70)90646-4. [DOI] [PubMed] [Google Scholar]
  2. Bürk R. R. A factor from a transformed cell line that affects cell migration. Proc Natl Acad Sci U S A. 1973 Feb;70(2):369–372. doi: 10.1073/pnas.70.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dipasquale A. Locomotion of epithelial cells. Factors involved in extension of the leading edge. Exp Cell Res. 1975 Oct 15;95(2):425–439. doi: 10.1016/0014-4827(75)90568-6. [DOI] [PubMed] [Google Scholar]
  4. Hudspeth A. J. Establishment of tight junctions between epithelial cells. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2711–2713. doi: 10.1073/pnas.72.7.2711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Misfeldt D. S., Hamamoto S. T., Pitelka D. R. Transepithelial transport in cell culture. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1212–1216. doi: 10.1073/pnas.73.4.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Vaughan R. B., Trinkaus J. P. Movements of epithelial cell sheets in vitro. J Cell Sci. 1966 Dec;1(4):407–413. doi: 10.1242/jcs.1.4.407. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES