Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Aug;77(8):4828–4830. doi: 10.1073/pnas.77.8.4828

Talpid2 mutant of the chicken with perturbed cartilage development has an altered precartilage-specific chromatin protein.

M A Perle, S A Newman
PMCID: PMC349940  PMID: 6933534

Abstract

An abundant nonhistone protein (Mr, 125,000) is lost from the chromatin embryonic chicken precartilage mesenchyme cells as they differentiate into cartilage [Newman, SA., Birnbaum, J & Yeoh, G.C.T.(1976) Nature (London) 259, 417-418]. We have now examined the chromatin proteins of precartilage and cartilage cells of chicken embryos carrying the talpid2 gene which causes a perturbed patern of cartilage differentiation in the homozygous state. We find that homozygous talpid2 precartilage chromatin differs from that of the normal cell type in having its abundant precartilage chromatin protein decreased to a Mr of approximately 120,000 and in having a "precocious" cartilage-like pattern of proteins in the Mr 35,500-36,500 region. The precartilage chromatin of talpid2 heterozygotes is completely normal within the resolution of our techniques, as is the cartilage chromatin of the homozygote and heterozygote talpid2 embryos. The correlation of an aberration in a developmentally significant chromatin protein with the perturbed development of its tissue of origin is discussed.

Full text

PDF
4828

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. EDE D. A., KELLY W. A. DEVELOPMENTAL ABNORMALITIES IN THE TRUNK AND LIMBS OF THE TALPID3 MUTANT OF THE FOWL. J Embryol Exp Morphol. 1964 Jun;12:339–356. [PubMed] [Google Scholar]
  2. Elgin S. C., Weintraub H. Chromosomal proteins and chromatin structure. Annu Rev Biochem. 1975;44:725–774. doi: 10.1146/annurev.bi.44.070175.003453. [DOI] [PubMed] [Google Scholar]
  3. GOETINCK P. F. STUDIES ON LIMB MORPHOGENESIS. I. EXPERIMENTS WITH THE POLYDACTYLOUS MUTANT, TALPID. J Exp Zool. 1964 Mar;155:161–170. doi: 10.1002/jez.1401550204. [DOI] [PubMed] [Google Scholar]
  4. Holtzer H., Rubinstein N., Fellini S., Yeoh G., Chi J., Birnbaum J., Okayama M. Lineages, quantal cell cycles, and the generation of cell diversity. Q Rev Biophys. 1975 Nov;8(4):523–557. doi: 10.1017/s0033583500001980. [DOI] [PubMed] [Google Scholar]
  5. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  6. Levitt D., Dorfman A. Concepts and mechanisms of cartilage differentiation. Curr Top Dev Biol. 1974;8:103–149. doi: 10.1016/s0070-2153(08)60607-9. [DOI] [PubMed] [Google Scholar]
  7. Linsenmayer T. F. Temporal and spatial transitions in collagen types during embryonic chick limb development. II. Comparison of the embryonic cartilage collagen molecule with that from adult cartilage. Dev Biol. 1974 Oct;40(2):372–377. doi: 10.1016/0012-1606(74)90138-9. [DOI] [PubMed] [Google Scholar]
  8. Newman S. A., Birnbaum J., Yeoh G. C. Loss of a non-histone chromatin protein parallels in vitro differentiation of cartilage. Nature. 1976 Feb 5;259(5542):417–418. doi: 10.1038/259417a0. [DOI] [PubMed] [Google Scholar]
  9. Newman S. A. Fibroblast progenitor cells of the embryonic chick limb. J Embryol Exp Morphol. 1980 Apr;56:191–200. [PubMed] [Google Scholar]
  10. SEARLS R. L. AN AUTORADIOGRAPHIC STUDY OF THE UPTAKE OF S35-SULFATE DURING THE DIFFERENTIATION OF LIMB BUD CARTILAGE. Dev Biol. 1965 Apr;11:155–168. doi: 10.1016/0012-1606(65)90054-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES