Abstract
Six inbred lines of Zea mays expressing different soluble (cytosolic) malate dehydrogenase (sMDH) zymogram phenotypes were analyzed genetically. sMDH was found to be coded for by unlinked duplicated loci in four of these inbred lines. The remaining two lines were found not to possess these duplicated loci. Furthermore, the duplicated loci, sMdh1 and sMdh2, have been found to be located on different chromosomes: sMdh1 on chromosome 1L linked to Amp1, and sMdh2 on chromosome 5S linked to Cat1 and Amp3. The importance of finding sMDH encoded by duplicated loci is discussed in relation to the role of chromosomal rearrangements, the relationship between the cytoplasmic and mitochondrial enzymes, and the evolution of Z. mays.
Keywords: gene duplication, gene evolution, gene-enzyme system
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bailey G. S., Wilson A. C., Halver J. E., Johnson C. L. Multiple forms of supernatant malate dehydrogenase in salmonid fishes. J Biol Chem. 1970 Nov 25;245(22):5927–5940. [PubMed] [Google Scholar]
- Beadle G. W. The Relation of Crossing over to Chromosome Association in Zea-Euchlaena Hybrids. Genetics. 1932 Jul;17(4):481–501. doi: 10.1093/genetics/17.4.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breidenbach R. W., Beevers H. Association of the glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm. Biochem Biophys Res Commun. 1967 May 25;27(4):462–469. doi: 10.1016/s0006-291x(67)80007-x. [DOI] [PubMed] [Google Scholar]
- Gottlieb L. D. Gene duplication and fixed heterozygosity for alcohol dehydrogenase in the diploid plant Clarkia franciscana. Proc Natl Acad Sci U S A. 1974 May;71(5):1816–1818. doi: 10.1073/pnas.71.5.1816. [DOI] [PMC free article] [PubMed] [Google Scholar]
- INGRAM V. M. Gene evolution and the haemoglobins. Nature. 1961 Mar 4;189:704–708. doi: 10.1038/189704a0. [DOI] [PubMed] [Google Scholar]
- Longo G. P., Scandalios J. G. Nuclear gene control of mitochondrial malic dehydrogenase in maize. Proc Natl Acad Sci U S A. 1969 Jan;62(1):104–111. doi: 10.1073/pnas.62.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markert C. L., Shaklee J. B., Whitt G. S. Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science. 1975 Jul 11;189(4197):102–114. doi: 10.1126/science.1138367. [DOI] [PubMed] [Google Scholar]
- McMillin D. E., Roupakias D. G., Scandalios J. G. Chromosomal Location of Two Mitochondrial Malate Dehydrogenase Structural Genes in ZEA MAYS Using Trisomics and B-A Translocations. Genetics. 1979 Aug;92(4):1241–1250. doi: 10.1093/genetics/92.4.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neurath H., Walsh K. A., Winter W. P. Evolution of structure and function of proteases. Science. 1967 Dec 29;158(3809):1638–1644. doi: 10.1126/science.158.3809.1638. [DOI] [PubMed] [Google Scholar]
- Ott L., Scandalios J. G. Genetic Control and Linkage Relationships among Aminopeptidases in Maize. Genetics. 1978 May;89(1):137–146. doi: 10.1093/genetics/89.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sattler P. W., Mecham J. S. Gene duplication at an isocitrate dehydrogenase locus in Scaphiopus. J Hered. 1979 Sep-Oct;70(5):352–353. doi: 10.1093/oxfordjournals.jhered.a109275. [DOI] [PubMed] [Google Scholar]
- Scandalios J. G., Sorenson J. C., Ott L. A. Genetic control and intracellular localization of glutamate oxaloacetic transaminase in maize. Biochem Genet. 1975 Dec;13(11-12):759–769. doi: 10.1007/BF00484407. [DOI] [PubMed] [Google Scholar]
- Spohn R. T., Guttman S. I. An electrophoretic study of inter- and intrapopulation genetic variation within the Northern fence swift, Sceloporus undulatus hyacinthinus. Comp Biochem Physiol B. 1976;55(4):471–474. doi: 10.1016/0305-0491(76)90001-8. [DOI] [PubMed] [Google Scholar]
- Wilson A. C., Sarich V. M., Maxson L. R. The importance of gene rearrangement in evolution: evidence from studies on rates of chromosomal, protein, and anatomical evolution. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3028–3030. doi: 10.1073/pnas.71.8.3028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang N. S., Scandalios J. G. Purification and biochemical properties of genetically defined malate dehydrogenase in maize. Arch Biochem Biophys. 1974 Apr 2;161(2):335–353. doi: 10.1016/0003-9861(74)90314-2. [DOI] [PubMed] [Google Scholar]
- Yang N. S., Sorenson J. C., Scandalios J. G. Genetic control of mitochondrial malate dehydrogenases: evidence for duplicated chromosome segments. Proc Natl Acad Sci U S A. 1977 Jan;74(1):310–314. doi: 10.1073/pnas.74.1.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang N., Scandalios J. G. Cytoplasmic synthesis of soluble and mitochondrial malate dehydrogenase isozymes in maize. Arch Biochem Biophys. 1975 Dec;171(2):575–585. doi: 10.1016/0003-9861(75)90067-3. [DOI] [PubMed] [Google Scholar]