Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Aug;77(8):4948–4952. doi: 10.1073/pnas.77.8.4948

Liver tumors distinguished by immunofluorescence microscopy with antibodies to proteins of intermediate-sized filaments.

P Bannasch, H Zerban, E Schmid, W W Franke
PMCID: PMC349966  PMID: 6159636

Abstract

Antibodies against constitutive proteins of different types of intermediate-sized filaments were used in immunofluorescence microscopy on frozen sections of normal rat liver and various rat liver tumors induced by treatment with nitrosamines. Antibodies to tonofilament prekeratin stained bile duct epithelia and hepatocytes of normal liver and hepatocellular carcinoma cells and ductal cells of cholangiofibromas. These cells were not significantly stained by antibodies to vimentin. By contrast, antibodies to vimentin stained mesenchymal cells of normal liver and cells of early and advanced angiosarcomas and of undifferentiated spindle cell sarcoma. These mesenchymal tumor cells were not stained with antibodies to prekeratin. The presence of intermediate-sized filaments in these tumors, often in large whorl-like aggregates, was also demonstrated by electron microscopy. The results show that immunofluorescence microscopy with antibodies to cytoskeletal proteins is a powerful tool for the classification and differential diagnosis of mesenchymal and epithelial liver tumors. We propose that staining with antibodies to proteins of different types of intermediate filaments can be used to improve the identification of tumors of other organs, including metastases, as well as non-neoplastic proliferative lesions.

Full text

PDF
4948

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bannasch P. Dose-dependence of early cellular changes during liver carcinogenesis. Arch Toxicol Suppl. 1980;3:111–128. doi: 10.1007/978-3-642-67389-4_9. [DOI] [PubMed] [Google Scholar]
  2. Bannasch P., Hacker H. J., Mayer D. Early biological markers during liver carcinogenesis. Arch Toxicol Suppl. 1979;(2):145–155. doi: 10.1007/978-3-642-67265-1_13. [DOI] [PubMed] [Google Scholar]
  3. Bannasch P., Krech R., Zerban H. Morphogenese und Mikromorphologie epithelialer Nierentumoren bei Nitrosomorpholin-vergifteten Ratten. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol. 1978 Aug 24;92(1):87–104. doi: 10.1007/BF00284096. [DOI] [PubMed] [Google Scholar]
  4. Bannasch P., Massner B. Die Feinstruktur des Nitrosomorpholin-induzierten Cholangiofibroms der Ratte. Virchows Arch B Cell Pathol. 1977 Sep 15;24(4):295–315. [PubMed] [Google Scholar]
  5. Bannasch P., Massner B. Histogenese und Cytogenese von Cholangiofibromen und Cholangiocarcinomen bei Nitrosomorpholin-vergifteten Ratten. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol. 1976 Dec 9;87(3):239–255. doi: 10.1007/BF00506497. [DOI] [PubMed] [Google Scholar]
  6. Bennett G. S., Fellini S. A., Croop J. M., Otto J. J., Bryan J., Holtzer H. Differences among 100-A filamentilament subunits from different cell types. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4364–4368. doi: 10.1073/pnas.75.9.4364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Borenfreund E., Bendich A. In vitro demonstration of Mallory body formation in liver cells from rats fed diethylnitrosamine. Lab Invest. 1978 Mar;38(3):295–303. [PubMed] [Google Scholar]
  8. Denk H., Franke W. W., Eckerstorfer R., Schmid E., Kerjaschki D. Formation and involution of Mallory bodies ("alcoholic hyalin") in murine and human liver revealed by immunofluorescence microscopy with antibodies to prekeratin. Proc Natl Acad Sci U S A. 1979 Aug;76(8):4112–4116. doi: 10.1073/pnas.76.8.4112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Drochmans P., Freudenstein C., Wanson J. C., Laurent L., Keenan T. W., Stadler J., Leloup R., Franke W. W. Structure and biochemical composition of desmosomes and tonofilaments isolated from calf muzzle epidermis. J Cell Biol. 1978 Nov;79(2 Pt 1):427–443. doi: 10.1083/jcb.79.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Falk H., Thomas L. B., Popper H., Ishak K. G. Hepatic angiosarcoma associated with androgenic-anabolic steroids. Lancet. 1979 Nov 24;2(8152):1120–1123. doi: 10.1016/s0140-6736(79)92515-7. [DOI] [PubMed] [Google Scholar]
  11. Franke W. W., Schmid E., Breitkreutz D., Lüder M., Boukamp P., Fusenig N. E., Osborn M., Weber K. Simultaneous expression of two different types of intermediate sized filaments in mouse keratinocytes proliferating in vitro. Differentiation. 1979;14(1-2):35–50. doi: 10.1111/j.1432-0436.1979.tb01010.x. [DOI] [PubMed] [Google Scholar]
  12. Franke W. W., Schmid E., Freudenstein C., Appelhans B., Osborn M., Weber K., Keenan T. W. Intermediate-sized filaments of the prekeratin type in myoepithelial cells. J Cell Biol. 1980 Mar;84(3):633–654. doi: 10.1083/jcb.84.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Franke W. W., Schmid E., Osborn M., Weber K. Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5034–5038. doi: 10.1073/pnas.75.10.5034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Franke W. W., Schmid E., Osborn M., Weber K. Intermediate-sized filaments of human endothelial cells. J Cell Biol. 1979 Jun;81(3):570–580. doi: 10.1083/jcb.81.3.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Franke W. W., Schmid E., Weber K., Osborn M. HeLa cells contain intermediate-sized filaments of the prekeratin type. Exp Cell Res. 1979 Jan;118(1):95–109. doi: 10.1016/0014-4827(79)90587-1. [DOI] [PubMed] [Google Scholar]
  16. Franke W. W., Schmid E., Winter S., Osborn M., Weber K. Widespread occurrence of intermediate-sized filaments of the vimentin-type in cultured cells from diverse vertebrates. Exp Cell Res. 1979 Oct 1;123(1):25–46. doi: 10.1016/0014-4827(79)90418-x. [DOI] [PubMed] [Google Scholar]
  17. Franke W. W., Weber K., Osborn M., Schmid E., Freudenstein C. Antibody to prekeratin. Decoration of tonofilament like arrays in various cells of epithelial character. Exp Cell Res. 1978 Oct 15;116(2):429–445. doi: 10.1016/0014-4827(78)90466-4. [DOI] [PubMed] [Google Scholar]
  18. Gonzalez-Crussi F., Manz H. J. Structure of a hepatoblastoma of pure epithelial type. Cancer. 1972 May;29(5):1272–1280. doi: 10.1002/1097-0142(197205)29:5<1272::aid-cncr2820290522>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
  19. Hruban Z., Swift H., Rechcigl M., Jr Fine structure of transplantable hepatomas of the rat. J Natl Cancer Inst. 1965 Sep;35(3):459–495. doi: 10.1093/jnci/35.3.459. [DOI] [PubMed] [Google Scholar]
  20. Hynes R. O., Destree A. T. 10 nm filaments in normal and transformed cells. Cell. 1978 Jan;13(1):151–163. doi: 10.1016/0092-8674(78)90146-0. [DOI] [PubMed] [Google Scholar]
  21. Ito J., Johnson W. W. Hepatoblastoma and hepatoma in infancy and childhood. Light and electron microscopic studies. Arch Pathol. 1969 Mar;87(3):259–266. [PubMed] [Google Scholar]
  22. Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature. 1980 Jan 17;283(5744):249–256. doi: 10.1038/283249a0. [DOI] [PubMed] [Google Scholar]
  23. Oda M., Price V. M., Fisher M. M., Phillips M. J. Ultrastructure of bile canaliculi, with special reference to the surface coat and the pericanalicular web. Lab Invest. 1974 Oct;31(4):314–323. [PubMed] [Google Scholar]
  24. Popper H., Thomas L. B., Telles N. C., Falk H., Selikoff I. J. Development of hepatic angiosarcoma in man induced by vinyl chloride, thorotrast, and arsenic. Comparison with cases of unknown etiology. Am J Pathol. 1978 Aug;92(2):349–376. [PMC free article] [PubMed] [Google Scholar]
  25. Scherer E., Emmelot P. Kinetics of induction and growth of precancerous liver-cell foci, and liver tumour formation by diethylnitrosamine in the rat. Eur J Cancer. 1975 Oct;11(10):689–696. doi: 10.1016/0014-2964(75)90042-0. [DOI] [PubMed] [Google Scholar]
  26. Schlegel R., Banks-Schlegel S., Pinkus G. S. Immunohistochemical localization of keratin in normal human tissues. Lab Invest. 1980 Jan;42(1):91–96. [PubMed] [Google Scholar]
  27. Schmid E., Tapscott S., Bennett G. S., Croop J., Fellini S. A., Holtzer H., Franke W. W. Differential location of different types of intermediate-sized filaments in various tissues of the chicken embryo. Differentiation. 1979;15(1):27–40. doi: 10.1111/j.1432-0436.1979.tb01031.x. [DOI] [PubMed] [Google Scholar]
  28. Sun T. T., Green H. Immunofluorescent staining of keratin fibers in cultured cells. Cell. 1978 Jul;14(3):469–476. doi: 10.1016/0092-8674(78)90233-7. [DOI] [PubMed] [Google Scholar]
  29. Sun T. T., Shih C., Green H. Keratin cytoskeletons in epithelial cells of internal organs. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2813–2817. doi: 10.1073/pnas.76.6.2813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wayss K., Bannasch P., Mattern J., Volm M. Vascular liver tumors induced in Mastomys (Praomys) natalensis by single or twofold administration of dimethylnitrosamine. J Natl Cancer Inst. 1979 May;62(5):1199–1207. [PubMed] [Google Scholar]
  31. Weber K., Rathke P. C., Osborn M., Franke W. W. Distribution of actin and tubulin in cells and in glycerinated cell models after treatment with cytochalasin B (CB). Exp Cell Res. 1976 Oct 15;102(2):285–297. doi: 10.1016/0014-4827(76)90044-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES