Skip to main content
Frontiers in Microbiology logoLink to Frontiers in Microbiology
editorial
. 2012 Nov 16;3:384. doi: 10.3389/fmicb.2012.00384

Erratum: Acquired antibiotic resistance genes: an overview

Marilyn C Roberts 1, Stefan Schwarz 2, Henk J M Aarts 3,*
PMCID: PMC3499791  PMID: 23162539

A commentary on

http://www.frontiersin.org/Antimicrobials,_Resistance_and_Chemotherapy/10.3389/fmicb.2011.00203/abstract

Acquired antibiotic resistance genes: an overview

by van Hoek, A. H. A. M., Mevius, D., Guerra, B., Mullany, P., Roberts, A. P., and Aarts, H. J. M. (2011). Front. Microbio. 2:203. doi: 10.3389/fmicb.2011.00203

Dr. Marilyn C. Roberts and Dr. Stefan Schwarz have contacted the authors of the original publication with several comments and suggestions to better harmonize the correct nomenclature of the antibiotic resistance genes, as the gene names were not always correctly presented in the various tables given.

Authors often pick their own gene names which in many cases have been approved for use for other genetically distinct genes or give names to determinants which were already given an approved designated name. Therefore, we (Dr. Marilyn C. Roberts and Dr. Stefan Schwarz and Dr. Henk J. M. Aarts on behalf of the authors of the original publication) would like to present here the correct nomenclature and mechanistic features of the antibiotic resistance genes belonging to the following classes: Aminoglycosides (Table 1), Phenicols (Table 3), Macrolides–Lincosamides–Streptogramin B (Table 4), Quinolones (Table 5), Tetracyclines (Table 6), and Trimethoprim (Table 7). In addition some additional information is given on the various classes of antibiotic resistance genes as also a section regarding the antibiotic class Oxazolidinones has been added. Table 2 was correctly displayed by van Hoek et al. (2011) but has been updated.

Table 1.

Acquired aminoglycoside resistance genes*.

Mechanism Gene name Length (nt) Accession number or reference Coding region Genera
ACT aac(2′)-Ia 537 L06156 264… 800 Providencia
aac(2′)-Ib 588 U41471 265… 852 Mycobacterium
aac(2′)-Ic 546 U72714 373… 918 Mycobacterium
aac(2′)-Id 633 U72743 386… 1018 Mycobacterium
aac(2′)-Ie 549 NC_011896 3039059… 3039607 Mycobacterium
aac(3)-I 465 AJ877225 5293… 5757 Pseudomonas
aac(3)-Ia 534 X15852 1250… 1783 Acinetobacter, Escherichia, Klebsiella, Salmonella, Serratia, Streptomyces
aac(3)-Ib 531 L06157 555… 1085 Pseudomonas
aac(3)-Ib-aac(6′)-Ib 1005 AF355189 1435… 2439 Pseudomonas
aac(3)-Ic 471 AJ511268 1295… 1765 Pseudomonas
aac(3)-Id 477 AB114632 104… 580 Proteus, Pseudomonas, Salmonella, Vibrio
aac(3)-Ie 477 AY463797 8583… 9059 Proteus, Pseudomonas, Salmonella, Vibrio
aac(3)-If 465 AY884051 61… 525 Serratia, Pseudomonas
aac(3)-Ig 477 CP000282 2333620… 2334096 Saccharophagus
aac(3)-Ih 459 CP000490 509912… 510370 Paracoccus
aac(3)-Ii 459 CP000356 638262… 638720 Sphingopyxis
aac(3)-Ij 465 CP000155 6963012… 6963476 Hahella
aac(3)-Ik 444 BX571856 765853… 766296 Staphylococcus
aac(3)-IIa 861 X51534 91… 951 Acinetobacter, Enterobacter, Escherichia, Klebsiella, Pseudomonas, Salmonella
aac(3)-IIb 810 M97172 656… 1465 Serratia
aac(3)-IIc 861 X54723 819… 1679 Escherichia
aac(3)-IId 861 EU022314 1… 861 Escherichia
aac(3)-IIe 861 EU022315 1… 861 Escherichia
aac(3)-IIIa 816 X55652 1124… 1939 Pseudomonas
aac(3)-IIIb 738 L06160 984… 1721 Pseudomonas
aac(3)-IIIc 840 L06161 106… 945 Pseudomonas
aac(3)-IVa 786 X01385 244… 1029 Escherichia
aac(3)-Va;
see aac(3)-IIa
aac(3)-Vb;
see aac(3)-IIb
aac(3)-VIa 900 M88012 193… 1092 Enterobacter, Escherichia, Salmonella
aac(3)-VIIa 867 M22999 493… 1359 Streptomyces
aac(3)-VIIIa 861 M55426 466… 1326 Streptomyces
aac(3)-IXa 846 M55427 274… 1119 Micromonospora
aac(3)-Xa 855 AB028210 2711… 3565 Streptomyces
aac(6′) 441 AY553333 1392… 1832 Pseudomonas
aac 555 AJ628983 1985… 2539 Pseudomonas
aac(6′) 402 DQ302723 81… 482 Pseudomonas
aac(6′) 555 EU912537 2092… 2646 Pseudomonas
aac(6′)-Ia 558 M18967 757… 1314 Citrobacter, Escherichia, Klebsiella, Shigella
aac(6′)-Ib 606 M21682 380… 985 Klebsiella, Proteus, Pseudomonas
aac(6′)-Ib-cr 519 EF636461 1124… 1642 Enterobacter, Escherichia, Klebsiella, Pseudomonas, Salmonella
aac(6′)-Ic 441 M94066 1554… 1994 Serratia
aac(6′)-Id 450 X12618 905… 1354 Klebsiella
aac(6′)-Ie;
see aac(6′)-aph(2″)
aac(6′)-If 435 X55353 279… 713 Enterobacter
aac(6′)-Ig 438 L09246 544… 981 Acinetobacter
aac(6′)-Ih 441 L29044 352… 792 Acinetobacter
aac(6′)-Ii 549 L12710 169… 717 Enterococcus
aac(6′)-Ij 441 L29045 260… 700 Acinetobacter
aac(6′)-Ik 438 L29510 369… 806 Acinetobacter
aac(6′)-Il 522 Z54241 530… 1051 Acinetobacter, Citrobacter
aac(6′)-Im 537 AF337947 1215… 1751 Escherichia
aac(6′)-In 573 Wu et al., 1997 Citrobacter
aac(6′)-Iq 552 AF047556 127… 678 Klebsiella, Salmonella
aac(6′)-Ir 441 AF031326 1… 441 Acinetobacter
aac(6′)-Is 441 AF031327 1… 441 Acinetobacter
aac(6′)-It 441 AF031328 1… 441 Acinetobacter
aac(6′)-Iu 441 AF031329 1… 441 Acinetobacter
aac(6′)-Iv 441 AF031330 1… 441 Acinetobacter
aac(6′)-Iw 441 AF031331 1… 441 Acinetobacter
aac(6′)-Ix 441 AF031332 1… 441 Acinetobacter
aac(6′)-Iy 438 AF144880 3452… 3979 Salmonella
aac(6′)-Iz 462 AF140221 390… 851 Stenotrophomonas
aac(6′)-Iaa 438 NC_003197 1707358… 1707795 Salmonella
aac(6′)-Iad 435 AB119105 1… 435 Acinetobacter
aac(6′)-Iae 552 AB104852 1935… 2486 Pseudomonas, Salmonella
aac(6′)-Iaf 552 AB462903 1200… 1751 Pseudomonas
aac(6′)-Iai 567 EU886977 544… 1110 Pseudomonas
aac(6′)-I30 555 AY289608 1524… 2078 Salmonella
aac(6′)-31 519 AJ640197 2474… 2992 Acinetobacter
aac(6′)-32 555 EF614235 2247… 2801 Pseudomonas
aac(6′)-33 555 GQ337064 1203… 1757 Pseudomonas
aac(6′)-IIa 555 M29695 707… 1261 Aeromonas, Klebsiella, Pseudomonas, Salmonella
aac(6′)-IIb 543 L06163 532… 1074 Pseudomonas
aac(6′)-IIc 582 AF162771 62… 643 Enterobacter, Klebsiella, Pseudomonas
aac(6′)-Iid;
see ant(3″)-Ih- aac(6′)-IId
aac(6′)-III;
see aac(6′)-Ic
aac(6′)-IV 435 X55353 279… 713 Enterobacter
aacA29 381 AY139599 768… 1148 Unknown
aacA43 564 HQ247816 639… 1202 Klebsiella
apmA 822 FN806789 2858… 3682 Staphylococcus
sat2a 525 X51546 518… 1042 Acinetobacter, Enterobacter, Escherichia, Klebsiella, Proteus, Pseudomonas, Salmonella, Shigella, Vibrio
sat3a 543 Z48231 221… 763 Escherichia
sat4a 543 X92945 38870… 39412 Campylobacter, Enterococcus, Staphylococcus,Streptococcus
aac(6′)-aph(2″) 1440 M13771 304… 1743 Enterococcus, Lactobacillus, Staphylococcus,Streptococcus
ACT–PHT aph(2″-Ia; see
aac(6′)-aph(2″)
MET armA 774 AY220558 1978… 2751 Acinetobacter, Citrobacter, Enterobacter, Escherichia, Klebsiella, Salmonella, Serratia
npmA 660 AB261016 3069… 3728 Escherichia
rmtA 756 AB120321 6677… 7432 Pseudomonas
rmtB 756 AB103506 1410… 2165 Enterobacter, Escherichia, Klebsiella, Pseudomonas, Serratia
rmtC 846 AB194779 6903… 7748 Proteus, Salmonella
rmtD 744 DQ914960 8889… 9632 Klebsiella, Pseudomonas
rmtD2 744 HQ401565 14139… 14882 Citrobacter, Enterobacter
rmtE 822 GU201947 55… 876 Escherichia
NUT aadA1 972 X02340 223… 1194 Acinetobacter, Aeromonas, Enterobacter, Escherichia, Klebsiella, Proteus, Pseudomonas, Salmonella, Shigella, Vibrio
aadA1b 792 M95287 3320… 4111 Pseudomonas, Serratia
aadA2 780 X68227 166… 945 Acinetobacter, Aeromonas, Citrobacter, Enterobacter, Escherichia, Klebsiella, Proteus, Pseudomonas, Salmonella, Shigella, Staphylococcus, Vibrio, Yersinia
aadA3 792 AF047479 1296… 2087 Escherichia
aadA4 789 Z50802 1306… 2094 Acinetobacter, Aeromonas, Escherichia, Pseudomonas,
aadA5 789 AF137361 64… 852 Acinetobacter, Aeromonas, Escherichia, Pseudomonas, Salmonella, Shigella, Staphylococcus, Vibrio
aadA6 846 AF140629 61… 906 Pseudomonas
aadA7 798 AF224733 32… 829 Escherichia, Salmonella, Vibrio
aadA8 792 AF326210 1… 792 Klebsiella, Vibrio
aadA8b 792 AM040708 1174… 1965 Escherichia
aadA9 837 AJ420072 26773… 27609 Corynebacterium
aadA10 834 U37105 2807… 3640 Pseudomonas
aadA11 846 AY144590 1… 846 Pseudomonas, Riemerella
aadA12 792 AY665771 1… 792 Escherichia, Salmonella, Yersinia
aadA13 798 AY713504 1… 798 Escherichia, Pseudomonas, Yersinia
aadA14 786 AJ884726 540… 1325 Pasteurella
aadA15 792 DQ393783 1800… 2591 Pseudomonas
aadA16 846 EU675686 3197… 4042 Escherichia, Klebsiella, Vibrio
aadA17 792 FJ460181 774… 1565 Aeromonas
aadA21 792 AY171244 47… 838 Salmonella
aadA22 792 AM261837 74… 865 Escherichia, Salmonella
aadA23 780 AJ809407 119… 898 Salmonella
aadA24 780 AM711129 1264… 2043 Escherichia, Salmonella
aadC 477 V01282 225… 701 Staphylococcus
aadD aadE; see ant(6)-Ia 771 AF181950 3176… 3946 Staphylococcus
ant(2″)-Ia 543 X04555 1296… 1829 Acinetobacter, Enterobacter, Escherichia, Klebsiella, Proteus, Pseudomonas, Salmonella, Serratia, Shigella, Vibrio
ant(4′)-Ib 771 AJ506108 209… 979 Bacillus
ant(4′)-IIa 759 M98270 145… 903 Pseudomonas
ant(4′)-IIb 756 AY114142 1061… 1816 Pseudomonas
ant(6)-Ia 909 AF330699 22… 930 Enterococcus, Staphylococcus
ant(6)-Ib 858 FN594949 27482… 28339 Campylobacter
ant(9)-Ia 783 X02588 331… 1113 Enterococcus, Staphylococcus
ant(9)-Ib 768 M69221 271… 1038 Enterococcus, Staphylococcus
spc; see ant(9)-Ia
sph 801 X64335 6557… 7354 Escherichia, Pseudomonas, Salmonella
str 849 X92946 18060… 18908 Enterococcus, Staphylococcus, Lactococcus
NUT–ACT ant(3″)-Ih-aac(6′)-IId 1392 AF453998 3555… 4946 Serratia
PHT aph(2″)-Ib 900 AF337947 272… 1171 Enterococcus, Escherichia
aph(2″)-Ic 921 U51479 196… 1116 Enterococcus
aph(2″)-Id 906 AF016483 131… 1036 Enterococcus
aph(2″)-Ie 906 AY743255 131… 1036 Enterococcus
aph(3′)-Ia 816 J01839 1162… 1977 Escherichia, Klebsiella, Pseudomonas, Salmonella
aph(3′)-Ib 816 M20305 779… 1594 Escherichia
aph(3′)-Ic 816 X625115 410… 1225 Acinetobacter, Citrobacter, Escherichia, Klebsiella, Salmonella, Serratia, Yersinia
aph(3′)-Id 816 Z48231 820… 1635 Escherichia
aph(3′)-IIa 795 X57709 1… 795 Escherichia, Pseudomonas, Salmonella
aph(3′)-IIb 807 X90856 388… 1194 Pseudomonas
aph(3′)-IIc 813 AM743169 2377498… 2378310 Stenotrophomonas
aph(3′)-III 795 M26832 604… 1398 Bacillus, Campylobacter, Enterococcus, Staphylococcus, Streptococcus
aph(3′)-IV 789 X03364 277… 1065 Bacillus
aph(3′)-Va 807 K00432 307… 1113 Streptomyces
aph(3′)-Vb 792 M22126 373… 1164 Streptomyces
aph(3′)-Vc 795 S81599 282… 1076 Micromonospora
aph(3′)-Va 780 X07753 103… 882 Acinetobacter, Pseudomonas
aph(3′)-VIb 780 AJ627643 4934… 5713 Alcaligenes
aph(3′)-VIIa 753 M29953 131… 1036 Campylobacter
aph(3′)-VIII 804 AF182845 1… 804 Streptomyces
aph(3′)-XV 795 Y18050 4758… 5552 Achromobacter, Citrobacter, Pseudomonas
aph(3″)-Ia 819 M16482 501… 1319 Streptomyces
aph(3″)-Ib 801 AB366441 11310… 12110 Enterobacter, Escherichia, Klebsiella, Pasteurella, Pseudomonas, Salmonella, Shigella, Yersinia, Vibrio
aph(4)-Ia 1026 V01499 231… 1256 Escherichia
aph(4)-Ib 999 X03615 232… 1230 Streptomyces
aph(6)-Ia 924 AY971801 1… 924 Streptomyces
aph(6)-Ib 924 X05648 382… 1305 Streptomyces
aph(6)-Ic 801 X01702 485… 1285 Escherichia, Pseudomonas, Salmonella
aph(6)-Id 837 M28829 866… 1702 Enterobacter, Escherichia, Klebsiella, Pasteurella, Pseudomonas, Salmonella, Shigella, Yersinia, Vibrio
aph(7″)-Ia 999 X03615 232… 1230 Streptomyces
aph(9)-Ia 996 U94857 151… 1146 Legionella
aph(9)-Ib 993 U70376 7526… 8518 Streptomyces
*

Last update: January 6th 2012. This table was adapted from Elbourne and Hall (2006), Magnet and Blanchard (2005), Partridge et al. (2009), Ramirez and Tolmansky (2010), Shaw et al. (1993), Vakulenko and Mobashery (2003), and data provided by B. Guerra, B. Aranda, D. Avsaroglu, B. Ruiz del Castillo, and R. Helmuth, on behalf of the Med-Vet Net (EU Network of Excellence) WP29 Project Group. The data were collected within the subproject “AME's,” with following participants representing their institutions: Agnes Perry Guyomard (ANSES), Dik Mevius (CVI), Yvonne Agerso (DTU), Katie Hopkins (HPA), Silvia Herrera (ISCIII), Alessandra Carattoli (ISS), Antonio Battisti (IZS-Rome), Stefano Lollai (IZS-Sardegna,), Lotte Jacobsen (SSI), Béla Nagy (VMRI), M. Rosario Rodicio and M. C. Mendoza (University of Oviedo, UO), Luis Martínez-Martínez (University Hospital of Valdecilla, HUV), and Bruno Gonzalez-Zorn (UCM).

ACT: Acetyltransferase; MET: Methyltransferase; NUT: Nucleotidyltransferase; PHT: Phosphotransferase.

a

Although the sat genes are not aminoglycoside resistance determinants, they encode streptothricin-acetyltransferases, for convenience they are included in this table.

Table 3.

Acquired phenicol resistance genes*.

Mechanism Group Gene Gene(s) included Length (nt) Accession number Coding region Genera
Efflux Type E-1 cmlA1 cmlA, cmlA2, cmlA4, cmlA5, cmlA6, cmlA7, cmlA8, cmlA10, cmlB 1260 M64556 601… 1860 Acinetobacter, Aeromonas, Arcanobacterium, Enterobacter, Escherichia, Klebsiella, Laribacter, Pseudomonas, Salmonella, Serratia, Staphylococcus
Type E-2 cml 903 M22614 427… 1335 Escherichia
Type E-3 floR cmlA-like, flo, pp-flo, cmlA9 1215 AF071555 4445… 5659 Acinetobacter, Aeromonas, Bordetella, Escherichia, Pasteurella, Salmonella, Stenotrophomonas, Vibrio
Type E-4 fexA 1428 AJ549214 177… 1604 Bacillus, Staphylococcus
Type E-5 cml 1179 X59968 508… 1686 Streptomyces
Type E-6 cmlv 1311 U09991 28… 1338 Streptomyces
Type E-7 cmrA cmr 1176 Z12001 993… 2168 Rhodococcus
Type E-8 cmr cmx 1176 U85507 3518… 4693 Corynebacterium
cmlB1 1266 AM296481 776… 2041 Bordetella
fexB 1410 JN192453 10637… 12046 Enterococcus
pexA 1248 HM537013 24055… 25302 Uncultured
Inactivating enzyme Type A-1 catA1 cat, catI, pp-cat 660 V00622 244… 903 Acinetobacter, Corynebacterium, Escherichia, Klebsiella, Salmonella, Shigella
Type A-2 catA2 cat, catII 642 X53796 187… 828 Aeromonas, Agrobacterium, Escherichia, Haemophilus, Legionella, Klebsiella, Photobacterium, Salmonella, Vibrio
Type A-3 catA3 cat, catIII 642 X07848 272… 913 Actinobacillus, Edwardsiella, Klebsiella, Mannheimia, Pasteurella, Shigella
Type A-4 cat 654 M11587 880… 1533 Proteus
Type A-5 cat 663 P20074$ 1002758… 1003420 Streptomyces
Type A-6 cat86 663 K00544 145… 807 Bacillus
Type A-7 cat(pC221) cat, catC 648 X02529 2267… 2914 Bacillus, Enterococcus, Lactobacillus, Staphylococcus, Streptococcus
Type A-8 cat(pC223) cat 648 AY355285 1000… 1647 Enterococcus, Lactococcus, Listeria, Staphylococcus
Type A-9 cat(pC194) cat, cat-TC 651 NC_002013 1260… 1910 Bacillus, Enterococcus, Lactobacillus, Staphylococcus, Streptococcus
Type A-10 cat 687 AY238971 1055… 1741 Bacillus
Type A-11 catP catD 624 U15027 2953… 3576 Clostridium, Neisseria
Type A-12 catS 492§ X74948 1… 492 Streptococcus
Type A-13 cat 624 M35190 309… 932 Campylobacter
Type A-14 cat 651 S48276 479… 1129 Listonella, Photobacterium, Proteus, Vibrio
Type A-15 catB 660 M93113 145… 804 Clostridium
Type A-16 catQ 660 M55620 459… 1118 Clostridium
Type B-1 catB1 cat 630 M58472 148… 777 Agrobacterium
Type B-2 catB2 633 AF047479 5957… 6589 Acinetobacter, Aeromonas, Bordetella, Escherichia, Klebsiella, Pasteurella, Pseudomonas, Salmonella
Type B-3 catB3 catB4, catB5, catB6, catB8 633 AJ009818 883… 1515 Acinetobacter, Aeromonas, Bordetella, Comamonas, Enterobacter, Escherichia, Klebsiella, Kluyvera, Morganella, Proteus, Pseudomonas, Salmonella, Serratia, Stenotrophomonas
Type B-4 catB7 639 AF036933 177… 815 Pseudomonas
Type B-5 catB9 630 AF462019 27… 656 Vibrio
Type B-6 catB10 633 AJ878850 1197… 1829 Pseudomonas
rRNA methylase cfr$ 1050 AJ579365 6290… 7339 Bacillus, Enterococcus, Escherichia, Jeotgalicoccus, Macrococcus, Proteus, Staphylococcus
*

Last update: December 16th 2011. Adapted from Partridge et al. (2009), Roberts and Schwarz (2009), Schwarz et al. (2004), and nucleotide BLAST searches.

§

Partial sequence.

$

The multidrug resistance gene cfr confers resistance against phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A (see Table 4; Kehrenberg et al., 2007).

Table 4.

Acquired macrolide-lincosamide-streptogramin B (MLS) resistance genes*.

Mechanism Gene Gene(s) included Length (nt) Accession number Coding region Genera
Efflux car(A) 1656 M80346 411… 2066 Streptomyces
lmr(A) 1446 X59926 318… 1763 Streptomyces
lsa(A) abc-23 1497 AY225127 41… 1537 Enterococcus
lsa(B) orf3 1479 AJ579365 4150… 5628 Staphylococcus
lsa(C) 1479 HM990671 5193… 6671 Gardnerella, Streptococcus
lsa(E) 1485 JQ861959 6673… 8157 Enterococcus, Staphylococcus
mef(A) mef(E) 1218 U70055 314… 1531 Acinetobacter, Bacteroides, Citrobacter, Clostridium, Corynebacterium, Enterococcus, Enterobacter, Escherichia, Fusobacterium, Gemella, Haemophilus, Klebsiella, Lactobacillus, Micrococcus, Morganella, Neisseria, Pantoea, Providencia, Proteus, Ralstonia, Rothia, Pseudomonas, Salmonella, Serratia, Staphylococcus, Streptococcus, Stenotrophomonas, Ureaplasma
mef(B) 1230 FJ196385 11084… 12313 Escherichia
msr(A) msr(B), msr(SA) 1467 X52085 343… 1809 Corynebacterium, Enterobacter, Enterococcus, Gemella, Pseudomonas, Staphylococcus, Streptococcus, Ureaplasma
msr(C) 1479 AY004350 496… 1974 Enterococcus
msr(D) mel, orf5 1464 AF274302 2462… 3925 Acinetobacter, Bacteroides, Citrobacter, Clostridium, Corynebacterium, Enterococcus, Enterobacter, Escherichia, Gemella, Fusobacterium, Klebsiella, Morganella, Neisseria, Proteus, Providencia, Pseudomonas, Ralstonia, Staphylococcus, Streptococcus, Serratia, Stenotrophomonas, Ureaplasma
msr(E) mel 1476 AY522431 20650… 22125 Acinetobacter, Citrobacter, Escherichia, Klebsiella, Mannheimia, Pasteurella, Serratia
ole(B) 1710 L36601 1421… 3130 Streptomyces
ole(C) 978 L06249 1528… 2505 Streptomyces
srm(B) 1653 X63451 558… 2210 Streptomyces
tlc(C) 1647 M57437 277… 1923 Streptomyces
vga(A) vga 1569 M90056 909… 2477 Staphylococcus
vga(A)LC vga 1569 DQ823382 1… 1569 Staphylococcus
vga(B) 1659 U82085 629… 2287 Enterococcus, Staphylococcus
vga(C) 1569 NC_013034 12570… 14138 Staphylococcus
vga(D) 1578 GQ205627 1394… 2971 Enterococcus
vga(E) 1575 FR772051 8741… 10315 Staphylococcus
Inactivating enzymea ere(A) 1221 AY183453 2730… 3950 Achromobacter, Aermonas, Citrobacter, Enterobacter, Escherichia, Klebsiella, Laribacter, Pantoeae, Providencia, Pseudomonas, Serratia, Salmonella, Staphylococcus, Stenotrophomonas
ere(B) 1260 X03988 383… 1642 Acinetobacter, Citrobacter, Enterobacter, Escherichia, Klebsiella, Proteus, Pseudomonas, Staphylococcus
Inactivating enzymeb vgb(A) vgb 900 M20129 641… 1540 Enterococcus, Staphylococcus
vgb(B) 888 AF015628 399… 1286 Staphylococcus
Inactivating enzymec lnu(A) lin(A), lin(A') 486 M14039 413… 898 Clostridium, Lactobacillus, Staphylococcus
lnu(B) lin(B) 804 AJ238249 127… 930 Clostridium, Enterococcus, Staphylococcus, Streptococcus
lnu(C) 495 AY928180 1150… 1644 Haemophilus, Streptococcus
lnu(D) 495 EF452177 19… 513 Streptococcus
lnu(F) lin(F), lin(G), linF 822 EU118119 1030… 1851 Escherichia, Salmonella
vat(A) 660 L07778 258… 917 Staphylococcus
vat(B) 639 U19459 67… 705 Enterococcus, Staphylococcus
vat(C) 639 AF015628 1307… 1945 Staphylococcus
vat(D) sat(A) 630 L12033 162… 791 Enterococcus
vat(E) sat(G), vat (E-3)–vat(E-8) 645 AF139725 63… 707 Enterococcus, Lactobacillus
vat(F) 666 AF170730 70… 735 Yersinia
vat(H) vat(G) 651 GQ205627 3037… 3687 Enterococcus
Inactivating enzymed mph(A) mph(K) 906 D16251 1626… 2531 Aeromonas, Escherichia, Citrobacter, Enterobacter, Klebsiella, Pantoeae, Pseudomonas, Proteus, Serratia, Shigella, Stenotrophomonas
mph(B) mph(B) 909 D85892 1159… 2067 Escherichia, Enterobacter, Proteus, Pseudomonas
mph(C) mph(BM) 900 AF167161 5665… 6564 Staphylococcus, Stenotrophomonas
mph(D) 840§ AB048591 1… 840 Escherichia, Klebsiella, Pantoea, Proteus, Pseudomonas, Stenotrophomonas
mph(E) mph, mph1, mph2 885 DQ839391 12873… 13757 Acinetobacter, Citrobacter, Escherichia, Klebsiella, Mannheimia, Pasteurella, Serratia
mph(F) mph(B), mph(E) 900 AM206957 4187… 5086 Unknown
rRNA methylase cfr$ 1050 AM408573 10028… 11077 Bacillus, Enterococcus, Escherichia, Jeotgalicoccus, Macrococcus, Proteus, Staphylococcus
erm(A) erm(TR) 732 X03216 4551… 5282 Aggregatibacter, Bacteriodes, Enterococcus, Helcococcus, Peptostreptococcus, Prevotella, Staphylococcus, Streptococcus
erm(B) erm(2), erm(AM), erm(AMR), erm(BC), erm(BP), erm(Z), erm(BZ1, BZ2), erm(IP), erm(P), erm, erm(80) 738 M36722 714… 1451 Aggregatibacter, Acinetobacter, Aerococcus, Arcanobacterium, Bacillus, Bacteriodes, Citrobacter, Corynebacterium, Clostridium, Enterobacter, Escherichia, Eubacterium, Enterococcus, Fusobacterium, Gemella, Haemophilus, Klebsiella, Lactobacillus, Micrococcus, Neisseria, Pantoeae, Pediococcus, Peptostreptococcus, Porphyromonas, Proteus, Pseudomonas, Ruminococcus, Rothia, Serratia, Staphylococcus, Streptococcus, Ureaplasma, Treponema, Wolinella
erm(C) erm(IM), erm(M) 735 M19652 988… 1722 Aggregatibacter, Actinomyces, Arcanobacterium, Bacillus, Bacteriodes, Clostridium, Corynebacterium, Escherichia, Eubacterium, Enterococcus, Haemophilus, Lactobacillus, Macrococcus, Micrococcus, Neisseria, Prevotella, Peptostreptococcus, Staphylococcus, Streptococcus, Wolinella
erm(D) erm(J), erm(K) 864 M29832 430… 1293 Bacillus, Salmonella
erm(E) erm(E2) 1146 X51891 190… 1335 Bacteroides, Eubacterium, Fusobacterium, Ruminococcus, Saccharopolyspora, Shigella, Streptomyces
erm(F) erm(FS), erm(FU) 801 M14730 241… 1041 Aggregatibacter, Actinomyces, Bacteroides, Capnocytophaga, Clostridium, Corynebacterium, Eubacterium, Enterococcus, Fusobacterium, Gardnerella, Haemophilus, Lactobacillus, Mobiluncus, Neisseria, Porphyromonas, Prevotella, Peptostreptococcus, Ruminococcus, Shigella, Selenomonas, Staphylococcus, Streptococcus, Treponema, Veillonella, Wolinella
erm(G) 735 M15332 672… 1406 Bacillus, Bacteroides, Catenibacterium, Lactobacillus, Prevotella, Porphyromonas, Staphylococcus
erm(H) car(B) 900 M16503 244… 1143 Streptomyces
erm(I) mdm(A) Streptomyces
erm(N) tlr(D) 876 X97721 160… 1035 Streptomyces
erm(O) lrm, srm(A) 783 M74717 40… 822 Streptomyces
erm(Q) 774 L22689 262… 1035 Aggregatibacter, Bacteroides, Clostridium, Staphylococcus, Streptococcus, Wolinella
erm(R) 1023 M11276 333… 1355 Aeromicrobium, Arthrobacter
erm(S) erm(SF), tlr(D) 960 M19269 460… 1419 Streptomyces
erm(T) erm(GT), erm(LF) 735 M64090 168… 902 Enterococcus, Lactobacillus, Staphylococcus, Streptococcus
erm(U) lrm(B) 837 X62867 361… 1197 Streptomyces
erm(V) erm(SV) 780 U59450 397… 1176 Eubacterium, Fusobacterium, Streptomyces
erm(W) myr(B) 936 D14532 1039… 1974 Micromonospora
erm(X) erm(CD), erm(Y) 855 M36726 296… 1150 Arcanobacterium, Bifidobacterium, Corynebacterium, Propionibacterium
erm(Y) erm(GM) 735 AB014481 556… 1290 Staphylococcus
erm(Z) srm(D) 849 AM709783 2817… 3665 Streptomyces
erm(30) pikR1 1011 AF079138 1283… 2293 Streptomyces
erm(31) pikR2 969 AF079138 154… 1122 Streptomyces
erm(32) tlr(B) 843 AJ009971 1790… 2632 Streptomyces
erm(33) 732 AJ313523 163… 894 Staphylococcus
erm(34) 846 AY234334 355… 1200 Bacillus
erm(35) 801 AF319779 33… 833 Bacteriodes
erm(36) 846 AF462611 186… 1031 Micrococcus
erm(37) erm(MT) 540 AE000516 2229013… 2229552 Mycobacterium
erm(38) 1161 AY154657 63… 1223 Mycobacterium
erm(39) 741 AY487229 2153… 2893 Mycobacterium
erm(40) 756 AY570506 2035… 2790 Mycobacterium
erm(41) 522 EU590124 258… 779 Mycobacterium
erm(42) erm(MI) 906 FR734406 1… 906 Mannheimia, Pasteurella, Photobacterium
*

Last update: January 6th 2012. Adapted from http://faculty.washington.edu/marilynr/

§

Partial sequence.

$

The multidrug resistance gene cfr confers resistance against phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A (see Table 3; Kehrenberg et al., 2007).

a

Esterase,

b

Lyase,

c

Transferase, and

d

Phosphorylase.

Table 5.

Acquired quinolone resistance genes*.

Gene Length (nt) Accession number Coding region Genera
qepA 1536 AB263754 7052… 8587 Escherichia
qepA2 1536 EU847537 1672… 3207 Escherichia
qnrA1a 657 AY070235 303… 959 Citrobacter, Escherichia, Klebsiella, Proteus
qnrA2a 657 AY675584 1… 657 Klebsiella, Shewanella
qnrA3a 657 DQ058661 1… 657 Shewanella
qnrA4a 657 DQ058662 1… 657 Shewanella
qnrA5a 657 DQ058663 1… 657 Shewanella
qnrA6a 657 DQ151889 1… 657 Proteus
qnrA7a 657 GQ463707 1… 657 Shewanella
qnrB1a 645 DQ351241 37… 681 Klebsiella
qnrB2a 645 DQ351242 1… 645 Citrobacter, Enterobacter, Klebsiella, Salmonella
qnrB3a 645 DQ303920 37… 681 Escherichia
qnrB4a 645 DQ303921 4… 648 Citrobacter, Enterobacter, Escherichia, Klebsiella
qnrB5a 645 DQ303919 37… 681 Salmonella
qnrB6a 645 EF520349 37… 681 Enterobacter, Panthoea
qnrB7a 645 EU043311 1… 645 Enterobacter, Klebsiella
qnrB8a 645 EU043312 1… 645 Citrobacter
qnrB9a 645 EF526508 1… 645 Citrobacter
qnrB10a 645 DQ631414 37… 681 Citrobacter, Enterobacter, Klebsiella
qnrB11a 645 EF653270 4… 648 Citrobacter
qnrB12a 645 AM774474 2435… 3079 Citrobacter
qnrB13a 645 EU273756 37… 681 Citrobacter
qnrB14a 645 EU273757 37… 681 Citrobacter
qnrB15a 645 EU302865 37… 681 Citrobacter
qnrB16a 645 EU136183 37… 681 Citrobacter
qnrB17a 645 AM919398 37… 681 Citrobacter
qnrB18a 645 AM919399 37… 681 Citrobacter
qnrB19a 645 EU432277 1… 645 Escherichia, Klebsiella, Salmonella
qnrB20a 645 AB379831 37… 681 Escherichia
qnrB21a 645 FJ611948 1… 645 Escherichia
qnrB22a 645 FJ981621 37… 681 Citrobacter
qnrB23a 645 FJ981622 37… 681 Citrobacter
qnrB24a 645 HM192542 37… 681 Citrobacter
qnrB25a 645 HQ172108 1… 645 Citrobacter
qnrB26a 645 HM439644 1… 645 Citrobacter
qnrB27a 645 HM439641 1… 645 Citrobacter
qnrB28a 645 HM439643 1… 645 Citrobacter
qnrB29a 645 HM439649 37… 681 Citrobacter
qnrB30a 645 HM439650 37… 681 Citrobacter
qnrB31a 645 HQ418999 1… 645 Klebsiella
qnrB32a 645 JN173054 37… 681 Citrobacter
qnrB33a 645 JN173055 36… 680 Citrobacter
qnrB34a 645 JN173056 39… 683 Citrobacter
qnrB35a 645 JN173057 2307… 2951 Citrobacter
qnrB36a 645 JN173058 37… 681 Citrobacter
qnrB37a 645 JN173059 36… 680 Citrobacter
qnrB38a 645 JN173060 2307… 2951 Citrobacter
qnrB39a NZ_ABWL02000005
qnrB40a 645 JN166689 16… 660 Citrobacter
qnrB41a 645 JN166690 37… 681 Citrobacter
qnrB42a 645 JN680743 1… 645 Klebsiella
qnrB43a 644 JQ349152 37… 680 Escherichia
qnrB44a 644 JQ349153 37… 680 Escherichia
qnrB45a 644 JQ349152 37… 680 Escherichia
qnrB46a 644 JQ349154 37… 680 Escherichia
qnrB47a 644 JQ349155 37… 680 Escherichia
qnrB48a 645 JQ762640 37… 681 Citrobacter
qnrB49a 645 JQ582718 37… 681 Citrobacter
qnrB50qnrB51 not public yet
qnrB52a 645 EF488762 1… 645 Proteus
qnrB53a 645 HQ704413 37… 681 Klebsiella
qnrB54qnrB59 not public yet
qnrCa 666 EU917444 1717… 2382 Proteus
qnrDa 645 EU692908 1… 645 Escherichia, Morganella, Proteus, Providencia, Salmonella
qnrS1a 657 AB187515 9737… 10393 Enterobacter, Escherichia, Klebsiella, Proteus, Salmonella, Shigella
qnrS2a 657 DQ485530 1… 657 Aeromonas, Salmonella
qnrS3a >656 EU077611 <1… 656 Escherichia
qnrS4a 657 FJ418153 1… 657 Salmonella
qnrS5a 657 HQ631377 1… 657 Aeromonas
qnrS6a 657 HQ631376 1… 657 Aeromonas
qnrS7qnrS8 not public yet
*

Last update: July 8th 2012. According to http://www.lahey.org/qnrStudies

a

and nucleotide BLAST searches.

Table 6.

Acquired tetracycline resistance genes*.

Mechanism Gene Length (nt) Accession number Coding region Genera
Efflux otr(B) 1692 AF079900 40… 1731 Mycobacterium, Streptomyces
otr(C) 1056 AY509111 324… 1379 Streptomyces
tcr 1539 D38215 516… 2054 Streptomyces
tet(A) 1200 X00006 1328… 2527 Acinetobacter, Aeromonas, Alcaligenes, Bordetella, Chryseobacterium, Citrobacter, Edwardsiella, Enterobacter, Escherichia, Flavobacterium, Klebsiella, Laribacter, Plesiomonas, Proteus, Pseudomonas, Salmonella, Serratia, Shigella, Variovorax, Veillonella, Vibrio
tetA(P) 1263 L20800 1063… 2325 Clostridium
tet(B) 1206 J01830 1608… 2813 Acinetobacter, Actinobacillus, Aeromonas, Aggregatibacter, Brevundimonas, Citrobacter, Enterobacter, Erwinia, Escherichia, Haemophilus, Klebsiella, Mannheimia, Moraxella, Neisseria, Pantoea, Pasteurella, Photobacterium, Plesiomonas, Proteus, Providencia, Pseudomonas, Roseobacter, Salmonella, Serratia, Shigella, Treponema, Vibrio, Yersinia
tet(C) 1191 X01654 86… 1276 Aeromonas, Bordetella, Chlamydia, Citrobacter, Enterobacter, Escherichia, Francisella, Halomonas, Klebsiella, Proteus, Pseudomonas, Roseobacter, Salmonella, Serratia, Shigella, Vibrio
tet(D) 1185 X65876 1521… 2705 Aeromonas, Alteromoas, Citrobacter, Edwardsiella, Enterobacter, Escherichia, Halomonas, Klebsiella, Morganella, Pasteurella, Photobacterium, Proteus, Salmonella, Shewanella, Shigella, Vibrio, Yersinia
tet(E) 1218 L06940 21… 1238 Aeromonas, Alcaligenes, Escherichia, Flavobacterium, Plesiomonas, Proteus, Providencia, Pseudomonas, Roseobacter, Serratia, Vibrio
tet(G) 1128 AF071555 6644… 7771 Acinetobacter, Brevundimonsa, Escherichia, Fusobacterium, Mannheimia, Ochrobactrum, Pasteurella, Proteus, Providencia, Pseudomonas, Roseobacter, Salmonella, Shewanella, Vibrio
tet(H) 1203 U00792 716… 1918 Acinetobacter, Actinobacillus, Histophilus, Mannheimia, Moraxella, Pasteurella, Psychrobacter
tet(J) 1197 AF038993 1084… 2280 Escherichia, Morganella, Proteus
tet(K) 1380 M16217 305… 1684 Bacillus, Clostridium, Enterococcus, Eubacterium, Haemophilus, Lactobacillus, Listeria, Mycobacterium, Nocardia, Peptostreptococcus, Staphylococcus, Streptococcus, Streptomyces
tet(L) 1377 D00006 189… 1565 Acinetobacter, Actinobacillus, Actinomyces, Bacillus, Bifidobacterium, Citrobacter, Clostridium, Enterobacter, Enterococcus, Escherichia, Flavobacterium, Fusobacterium, Geobacillus, Kurthia, Lactobacillus, Listeria, Mannheimia, Morganella, Mycobacterium, Nocardia, Ochrobactrum, Oceanobacillus, Paenibacillus, Pasteurella, Pediococcus, Peptostreptococcus, Proteus, Pseudomonas, Rahnella, Salmonella, Sporosarcina, Staphylococcus, Streptococcus, Streptomyces, Variovorax, Veillonella, Virgibacillus
tet(V) 1260 AF030344 462… 1721 Mycobacterium
tet(Y) 1176 AF070999 1680… 2855 Aeromonas, Escherichia, Photobacterium
tet(Z) 1155 AF121000 11880… 13034 Corynebacterium, Lactobacillus
tet(30) 1185 AF090987 1130… 2314 Agrobacterium
tet(31) 1233 AJ250203 1651… 2883 Aeromonas, Gallibacterium
tet(33) 1224 AJ420072 22940… 24163 Arthrobacter, Corynebacterium
tet(35) 1110 AF353562 2213… 3322 Stenotrophomonas, Vibrio
tet(38) 1353 AY825285 1… 1353 Staphylococcus
tet(39) 1188 AY743590 749… 1936 Acinetobacter, Alcaligenes, Brevundimonas, Enterobacter, Providencia, Stenotrophomonas
tet(40) 1221 AM419751 14211… 15431 Clostridium
tet(41) 1182 AY264780 1825… 3006 Serratia
tet(42) 1287 EU523697 687… 1973 Bacillus, Microbacterium, Micrococcus, Paenibacillus, Pseudomonas, Staphylococcus
tet(43) 1560 GQ244501 60… 1619 Uncultured
Enzymatic tet(X) 1167 M37699 586… 1752 Bacteroides, Pseudomonas, Sphingobacterium
tet(34) 465 AB061440 306… 770 Aeromonas, Pseudomonas, Serratia
tet(37) 327 AF540889 1… 327 Uncultured
Ribosomal protection otr(A) 1992 X53401 349… 2340 Bacillus, Mycobacterium, Streptomyces
tetB(P) 1959 L20800 2309… 4267 Clostridium
tet(M) 1920 U08812 1981… 3900 Abiotrophia, Acinetobacter, Actinomyces, Aerococcus, Aeromonas, Afipia, Arthrobacter, Bacillus, Bacterionema, Bacteroides, Bifidobacterium, Brachybacterium, Catenibacterium, Clostridium, Corynebacterium, Edwardsiella, Eikenella, Enterobacter, Enterococcus, Erysipelothrix, Escherichia, Eubacterium, Flavobacterium, Fusobacterium, Gardnerella, Gemella, Granulicatella, Haemophilus, Kingella, Klebsiella, Kurthia, Lactobacillus, Lactococcus, Listeria, Microbacterium, Mycoplasma, Neisseria, Paenibacillus, Pantoea, Pasteurella, Peptostreptococcus, Photobacterium, Prevotella, Pseudoalteromonas, Pseudomonas, Ralstonia, Selenomonas, Serratia, Shewanella, Staphylococcus, Streptococcus, Streptomyces, Ureaplasma, Veillonella, Vibrio
tet(O) 1920 M18896 207… 2126 Actinobacillus, Aerococcus, Anaerovibrio, Bifidobacterium, Butyrivibrio, Campylobacter, Clostridium, Enterococcus, Eubacterium, Fusobacterium, Gemella, Lactobacillus, Megasphaera, Mobiluncus, Neisseria, Peptostreptococcus, Psychrobacter, Staphylococcus, Streptococcus
tet(Q) 1926 Z21523 362… 2287 Anaerovibrio, Bacteroides, Capnocytophaga, Clostridium, Eubacterium, Fusobacterium, Gardnerella, Lactobacillus, Mitsuokella, Mobiluncus, Neisseria, Peptostreptococcus, Porphyromonas, Prevotella, Ruminococcus, Selenomonas, Streptococcus, Subdolgranulum, Veillonella
tet(S) 1926 L09756 447… 2372 Enterococcus, Lactobacillus, Lactococcus, Listeria, Staphylococcus, Streptococcus, Veillonella
tet(T) 1956 L42544 478… 2433 Lactobacillus, Streptococcus
tet(W) 1920 AJ222769 3687… 5606 Acidaminococcus, Actinomyces, Arcanobacterium, Bacillus, Bacteroides, Bifidobacterium, Butyrivibrio, Clostridium, Fusobacterium, Lactobacillus, Megasphaera, Mitsuokella, Neisseria, Porphyromonas, Prevotella, Roseburia, Selenomonas, Staphylococcus, Streptococcus, Streptomyces, Subdolgranulum, Veillonella
tet(32) 1920 DQ647324 181… 2100 Eubacterium, Streptococcus
tet(36) 1923 AJ514254 2534… 4456 Bacteroides, Clostridium, Lactobacillus
tet(44) 1923 FN594949 25245… 27167 Campylobacter, Clostricium
tet 1920 M74049 343… 2261 Streptomyces
Unknown tet(U) 318 U01917 413… 730 Enterococcus, Staphylococcus, Streptococcus
*

Last update: January 6th 2012. Adapted from http://faculty.washington.edu/marilynr/. The efflux genes tet(45) and tet(46) have been named but not yet published.

Table 7.

Acquired trimethoprim resistance genes*.

Gene Sub-family Gene(s) included Length (nt) Accession number Coding region Genera
dfrA1 dfrA1-group dhfrIb, dfr1, dhfrI 474 X00926 236… 709 Actinobacter, Enterobacter, Escherichia, Klebsiella, Laribacter, Morganella, Pasteurella, Proteus, Pseudomonas, Salmonella, Serratia, Shigella, Vibrio
dfrA3 489 J03306 103… 591 Salmonella
dfrA5 dfrA1-group dhfrV, dfrV 474 X12868 1306… 1779 Actinobacter, Aeromonas, Comomonas, Enterobacter, Escherichia, Klebsiella, Pseudomonas, Salmonella, Vibrio
dfrA6 dfrA1-group dfrVI 474 Z86002 336… 809 Proteus
dfrA7 dfrA1-group dhfrVII, dfrVII, dfrA17 474 X58425 594… 1067 Actinobacter, Escherichia, Proteus, Salmonella, Shigella
dfrA8 510 U10186 711… 1220 Escherichia
dfrA9 534 X57730 726… 1259 Escherichia
dfrA10 564 L06418 5494… 6057 Actinobacter, Escherichia, Klebsiella, Salmonella
dfrA12 dfrA12-group dhfrXII, dfr12 498 Z21672 310… 807 Actinobacter, Aeromonas, Citrobacter, Edwardsiella, Enterobacter, Escherichia, Klebsiella, Proteus, Providencia, Pseudomonas, Serratia, Salmonella, Staphylococcus, Stenotrophomonas
dfrA13 dfrA12-group 498 Z50802 718… 1215 Escherichia
dfrA14 dfrA1-group dhfrIb 474 Z50805 72… 545 Achromobacter, Aeromonas, Escherichia, Klebsiella, Salmonella, Vibrio
dfrA15 dfrA1-group dhfrXVb 474 Z83311 357… 830 Actinobacter, Enterobacter, Escherichia, Klebsiella, Morganella, Proteus, Pseudomonas, Vibrio
dfrA16 dfrA1-group dhfrXVI, dfr16 474 AF174129 1352… 1825 Aeromonas, Escherichia, Klebsiella, Salmonella
dfrA17 dfrA1-group dhfrXVII, dfr17 474 AB126604 98… 571 Actinobacter, Enterobacter, Escherichia, Klebsiella, Kluyvera, Laribacter, Pseudomonas, Salmonella, Serratia, Shigella, Staphylococcus, Stenotrophomonas
dfrA18 dfrA19 570 AJ310778 7004… 7573 Enterobacter, Klebsiella, Salmonella
dfrA20 510 AJ605332 1304… 1813 Pasteurella
dfrA21 dfrA12-group dfrxiii 498 AY552589 1… 498 Escherichia, Klebsiella, Salmonella
dfrA22 dfrA12-group dfr22, dfr23 498 AJ628423 325… 822 Escherichia, Klebsiella, Serratia
dfrA23 561 AJ746361 6743… 7303 Salmonella
dfrA24 558 AJ972619 83… 640 Escherichia
dfrA25 dfrA1-group 459 DQ267940 54… 512 Citrobacter, Klebsiella, Salmonella, Serratia
dfrA26 552 AM403715 303… 854 Escherichia
dfrA27 dfrA1-group dfr 474 EU675686 2543… 3016 Aeromonas, Escherichia, Klebsiella, Serratia, Vibrio
dfrA28 dfrA1-group 474 FM877476 116… 589 Aeromonas
dfrA29 dfrVII, dfrA7 472 AM237806 615… 1086 Salmonella
dfrA30 dhfrV 474 AM997279 705… 1178 Klebsiella
dfrA31 dfr6 474 AB200915 1832… 2305 Escherichia, Vibrio
dfrA32 dfrA1-group 474 GU067642 535… 1008 Laribacter, Salmonella
dfrA33 dfrA12-group 498 FM957884 88… 585 Unknown
dfrB1 dhfrIIa, dfr2a 237 U36276 717… 953 Aeromonas, Bordetella, Escherichia, Klebsiella, Pseudomonas
dfrB2 dhfrIIb, dfr2b 237 J01773 809… 1045 Escherichia
dfrB3 dhfrIIc, dfr2c 237 X72585 5957… 6193 Aeromonas, Enterobacter, Escherichia, Klebsiella
dfrB4 dfr2d 237 AJ429132 69… 305 Aeromonas, Escherichia, Klebsiella
dfrB5 dfr2e 237 AY943084 2856… 3092 Pseudomonas
dfrB6 237 DQ274503 394… 630 Salmonella
dfrB7 237 DQ993182 244… 480 Aeromonas
dfrB8 249 GU295656 1048… 1296 Aeromonas
dfrD 489 Z50141 94… 582 Listeria, Staphylococcus
dfrG 498 AB205645 1013… 1510 Enterococcus, Staphylococcus
dfrK 492 FM207105 2788… 3279 Enterococcus, Staphylococcus
*

Last update: December 12th 2011. Partly adapted from Grape (2006), Partridge et al. (2009), and nucleotide BLAST searches.

Table 2.

β-lactamases and ESBLs families.

Amber class A β-lactamases and ESBLs Number of variants* Amber class B β-lactamases and MBLs Number of variants* Amber class C β-lactamases and ESBLs Number of variants* Amber class D β-lactamases and ESBLs Number of variants*
blaACI 1 blaB 13 blaACCa 5 ampH 1
blaAER 1 blaCGB 2 blaACTa 14 ampS 1
blaAST 1 blaDIM 1 blaADC 54 blaLCR 1
blaBEL 3 blaEBR 1 blaBIL 1 blaNPS 1
blaBES 1 blaGIM 1 blaBUT 2 blaOXAa 247
blaBIC 1 blaGOB 18 blaCFEa 1 loxA 1
blaBPS 5 blaIMPa 37 blaCMG 1
blaCARB 14 blaINDa 7 blaCMYa 92
blaCIA 1 blaJOHN 1 blaDHAa 8
blaCGA 1 blaMUS 1 blaFOXa 10
blaCKO 5 blaNDM 6 blaLATa 1
blaCME 2 blaSIM 1 blaLENc 26
blaCTX-Ma 130 blaSPM 1 blaMIRa 5
blaDES 1 blaTUS 1 blaMOR 1
blaERP 1 blaVIMa 34 blaMOXa 8
blaFAR 1 cepA 7 blaOCH 7
blaFONA 6 cfiA 16 blaOKP-Ac 16
blaGESa,b 22 cphA 8 blaOKP-Bc 20
blaHERA 8 imiH 1 blaOXYc 23
blaIMI 3 imiS 1 blaTRU 1
blaKLUAd 12 blaZEG 1
blaKLUCd 2 cepH 1
blaKLUG 1
blaKLUY 4
blaKPCa 12
blaLUT 6
blaMAL 2
blaMOR 1
blaNMC-A 1
blaPERa 7
blaPME 1
blaPSE 4
blaRAHN 2
blaROB 1
blaSED 1
blaSFC 1
blaSFO 1
blaSHVa 166
blaSMEa 3
blaTEMa 201
blaTLA 1
blaTOHO 1
blaVEBa 7
blaZ 1
cdiA 1
cfxA 6
cumA 1
hugA 1
penA 1
*

Last update: June 8th 2012.

b

GES and IBC-type ESBLs have all been renamed as blaGES according to Weldhagen et al. (2006).

d

blaKLUA, blaKLUC, blaKLUG, and blaKLUY seem to be the chromosomal progenitors of acquired CTX-M group 2, 1, 8, and 9 genes, respectively (Saladin et al., 2002; Olson et al., 2005).

To the subsection dealing with the “Resistance mechanisms” of the AMINOGLYCOSIDES we would like to add that to date six additional methylases have been reported, i.e., npmA, rmtA, rmtB, rmtC, rmtD, and rmtE (Courvalin, 2008; Doi et al., 2008; Davis et al., 2010). Futhermore, that within the three major classes (AAC, ANT, and APH) an additional subdivision can be made based on the enzymes' target sites within the aminoglycoside molecules: i.e., there are four acetyltransferases: AAC(1), AAC(2′), AAC(3), and AAC(6′); five nucleotidyltransferases: ANT(2″), ANT(3″), ANT(4′), ANT(6), and ANT(9); and seven phosphotransferases: APH(2″), APH(3′), APH(3″), APH(4), APH(6), APH(7″), and APH(9).

To the subsection β-LACTAM, Resistance, mechanisms we would like to add that in recent years acquired genes encoding ESBLs have become a major concern (Bradford, 2001). Over time, the genes for the parent enzymes blaTEM−1, blaTEM−2, and blaSHV−1 have undergone point mutations which resulted in amino acid substitutions that changed the substrate spectrum to that of ESBLs, starting with blaTEM−3 and blaSHV−2 (Bradford, 2001).

Because chloramphenicol is not an actual antibiotic class the subsection of CHLORAMPHENICOL should be called PHENICOLS. Concerning the history of PHENICOLS, it is worthwhile to know the first antibiotic, chloramphenicol, originally referred to as chloromycetin, was isolated already in 1947 from Streptomyces venezuelae (Ehrlich et al., 1947).

Besides the inactivating enzymes (chloramphenicol acetyltransferases), there are also reports on other phenicol resistance systems, such as the inactivation by phosphotransferases, mutations of the target site, permeability barriers, and efflux systems (Schwarz et al., 2004). Of the latter mechanism, cmlA and floR are the most commonly known genes in Gram-negative bacteria (Bissonnette et al., 1991; Briggs and Fratamico, 1999).

The macrolides (subsection MACROLIDES–LINCOSAMIDES–STREPTOGRAMIN B) have a similar mode of antibacterial action, comparable antibacterial spectra and in part overlapping binding sites at the ribosome as two other antibiotic classes, i.e., lincosamides and streptogramin antibiotics (comprising streptogramin A and B compounds that act synergistically). Consequently, these antibiotics, although chemically distinct, have been clustered together as MLS antibiotics (Roberts, 1996). Macrolides, lincosamides and streptogramins all inhibit protein synthesis by binding to the 50S ribosomal subunit of bacteria (Weisblum, 1995; Roberts, 2002).

To Resistance mechanisms of the subsection MACROLIDES–LINCOSAMIDES–STREPTOGRAMIN B. Shortly after the introduction of erythromycin into clinical setting in the 1950s, bacterial resistance to this antibiotic was reported for the first time in staphylococci (Weisblum, 1995). Since then a large number of bacteria have been identified that are resistant to MLS due to the presence of various different genes. The resistance determinants responsible include rRNA methylases that modify the ribosomal target sites, ABC transporters, and efflux proteins of the Major Facilitator Superfamily, as well as genes for inactivating enzymes (Roberts et al., 1999; Roberts, 2008). The latter group can be further subdivided into esterases, lyases, phosphorylases, and transferases (Table 4).

The most common mechanism of MLSB resistance is due to the presence of rRNA methylases, encoded by the erm genes. These enzymes methylate the adenine residue(s) resulting in MLSB resistance. The methylated adenine(s) prevents the drugs from binding to the 50S ribosomal subunit. The other two mechanisms efflux and enzymatic inactivation result in resistance to only 1 or 2 classes of antibiotics belonging to the MLS group.

There are currently 77 MLS resistance genes recognized. A new MLS gene must have <79% amino acid identity with all previously characterized MLS genes before receiving a unique name (Roberts et al., 1999; Roberts, 2008). For an actual list of the MLS acquired resistance genes we refer to the website of Dr. Marilyn Roberts, http://faculty.washington.edu/marilynr/.

In addition to the subsection of QUINOLONES currently five families of qnr genes have been reported; qnrA (7 subtypes), qnrB (59 subtypes), qnrC (1 subtype), qnrD (1 subtype), and qnrS (8 subtypes) (Jacoby et al., 2008; Cattoir and Nordmann, 2009; Cavaco et al., 2009; Strahilevitz et al., 2009; Torpdahl et al., 2009).

Another mechanism of conferring resistance to quinolones is represented by the plasmid-borne gene qepA, which codes for an efflux pump that can export hydrophilic fluoroquinolones, e.g., ciprofloxacin and enrofloxacin (Périchon et al., 2007; Yamane et al., 2007). A variant of this resistance pump, QepA2, was identified in an E. coli isolate from France (Cattoir et al., 2008).

Regarding TETRACYCLINE, Resistance mechanisms, currently there are 45 different acquired tetracycline resistance determinants recognized (Roberts, 1996, 2005; Brown et al., 2008) (Table 6). For an up-to-date list of the acquired tetracycline resistance genes, we refer to the website of Dr. Marilyn Roberts, http://faculty.washington.edu/marilynr/. Among these, 26 of the tet genes, 2 of the otr genes and the only tcr determinant code for efflux pumps, whereas 11 tet genes and 1 otr gene code for ribosomal protection proteins (RPPs). The enzymatic inactivation mechanism can be attributed to 3 tet genes. The tet(U) determinant represents an unknown tetracycline resistance mechanism since its sequence does not appear to be related to either efflux or RPPs, nor to the inactivation enzymes. The efflux and RPP encoding genes are found in members of Gram-positive, Gram-negative, aerobic, as well as anaerobic bacteria. In contrast, the enzymatic tetracycline inactivation mechanism has so far only been identified in Gram-negative bacteria. The tet(M) has the broadest host range of all tetracycline resistance genes, whereas tet(B) gene has the widest range among the Gram-negative bacteria. In recent years published data indicate that there are increasing numbers of Gram-negative bacteria that carry tet genes originally identified in Gram-positive bacteria (Roberts, 2002).

To the subsection TRIMETHOPRIM, Resistance mechanisms. Initially, the acquired DHFRs fell into two distinct families A and B, encoded by the dfrA and dfrB genes (Howell, 2005). Up to now 6 plasmid-mediated families can be distinguished with relatively few dfr determinants originating from Gram-positive bacteria (Table 7). The dfrK and dfrA28 genes are the newest additions to the trimethoprim resistance determinant family (Kadlec and Schwarz, 2009; Kadlec et al., 2011). In contrast to the latest reported DHFRs, the oldest families, dfrA and dfrB, each contain several members (Roberts, 2002; Levings et al., 2006). For example, the dfrA group accomodates over 30 published genes; however, unpublished, dfrA variants are also present in the public DNA libraries and some genes apparently have changed nomenclature (Table 7).

Furthermore, we suggest an additional section concerning oxazolidinones.

Oxazolidinones

History and action mechanism

Linezolid is to date the only FDA-approved oxazolidinone (Shaw and Barbachyn, 2011). It was approved in 2000 for the treatment of serious infections caused by Gram-positive bacteria resistant to other antibiotics, such as vancomycin-resistant enterococci (VRE) and methicillin-resistant Staphylococcus aureus (MRSA) (Long and Vester, 2012). As such linezolid is considered one of the last resort antimicrobial agents in human medicine. It has not been approved for use in veterinary medicine. Oxazolidinones bind at the P site of the ribosome and inhibit the formation of the initiation complex, which consists of mRNA, f-Met tRNA, and the 50S ribosomal subunit (Shaw and Barbachyn, 2011; Long and Vester, 2012).

Resistance mechanism

Various mutations located in the peptidyl transferase loop of domain V of 23S rRNA as well as mutations in the genes for the ribosomal proteins L3 and L4, all associated with resistance to oxazolidinones, have been identified (reviewed by Long and Vester, 2012). A single gene, cfr, has been identified to confer transferable resistance to oxazolidinones. This gene codes for a methyltransferase that targets A2503 in 23S rRNA (Kehrenberg et al., 2005). Besides oxazolidinone resistance, it also confers resistance to phenicols, lincosamides, pleuromutilins, and streptogramin A antibiotics. Although initially identified in coagulase-negative staphylococci of animal origin, the gene cfr has now been detected in a wide variety of staphylococci of human and animal origin, including a Panton-Valentin leukocidin-positive MRSA USA300 (Shore et al., 2010) and livestock-associated MRSA ST398 (Kehrenberg et al., 2009). More recently, the cfr gene has also been identified in Bacillus spp. (Dai et al., 2010) and Enterococcus faecalis (Liu et al., 2012), but also in Gram-negative bacteria, such as Proteus vulgaris (Wang et al., 2011) and Escherichia. coli (Wang et al., 2012). Plasmids and insertion sequences seem to play an important role in the spread of this gene across species and genus boundaries.

References

  1. Bissonnette L., Champetier S., Buisson J.-P., Roy P. H. (1991). Characterization of the non-enzymatic chloramphenicol resistance (cmlA) gene of the In4 integron of Tn1696: similarity of the product to transmembrane transport proteins. J. Bacteriol. 173, 4493–4502 [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford P. A. (2001). Extended-spectrum β-lactamase in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14, 933–951 10.1128/CMR.14.4.933-951.2001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Briggs C. E., Fratamico P. M. (1999). Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimurium DT104. Antimicrob. Agents Chemother. 43, 846–849 [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown M. G., Mitchell E. H., Balkwill D. L. (2008). Tet 42, a novel tetracycline resistance determinant isolated from deep terrestrial subsurface bacteria. Antimicrob. Agents Chemother. 52, 4518–4521 10.1128/AAC.00640-08 [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cattoir V., Nordmann P. (2009). Plasmid-mediated quinolone resistance in gram-negative bacterial species: an update. Curr. Med. Chem. 16, 1028–1046 [DOI] [PubMed] [Google Scholar]
  6. Cattoir V., Poirel L., Nordmann P. (2008). Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France. Antimicrob. Agents Chemother. 52, 3801–3804 10.1128/AAC.00638-08 [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cavaco L. M., Hasman H., Xia S., Aarestrup F. M. (2009). qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrob. Agents Chemother. 53, 603–608 10.1128/AAC.00997-08 [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Courvalin P. (2008). New plasmid-mediated resistances to antimicrobial agents. Arch. Microbiol. 189, 289–291 10.1007/s00203-007-0331-9 [DOI] [PubMed] [Google Scholar]
  9. Dai L., Wu C. M., Wang M. G., Wang Y., Wang Y., Huang S. Y., et al. (2010). First report of the multidrug resistance gene cfr and the phenicol resistance gene fexA in a Bacillus strain from swine feces. Antimicrob. Agents Chemother. 54, 3953–3955 10.1128/AAC.00169-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davis M. A., Baker K. N. K., Orfe L. H., Shah D. H., Besser T. E., Call D. E. (2010). Discovery of a gene conferring multiple-aminoglycoside resistance in Escherichia coli. Antimicrob. Agents Chemother. 54, 2666–2669 10.1128/AAC.01743-09 [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Doi Y., Wachino J.-I., Arakawa Y. (2008). Nomenclature of plasmid-mediated 16S rRNA methylases responsible for panaminoglycoside resistance. Antimicrob. Agents Chemother. 52, 2287–2288 10.1128/AAC.00022-08 [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ehrlich J., Bartz Q. R., Smith R. M., Joslyn D. A., Burkholder P. R. (1947). Chloromycetin a new antibiotic from a soil actinomycete. Science 106, 417 10.1126/science.106.2757.417 [DOI] [PubMed] [Google Scholar]
  13. Elbourne L. D. H., Hall R. M. (2006). Gene cassette encoding a 3-N-aminoglycoside acetyltransferase in a chromosomal integron. Antimicrob. Agents Chemother. 50, 2270–2271 10.1128/AAC.01450-05 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grape M. (2006). Molecular Basis for Trimethoprim and Sulphonamide Resistance in Gram Negative Pathogens. Ph.D. Thesis, Stockholm, Sweden: Karolinska Institutet [Google Scholar]
  15. Howell E. E. (2005). Searching sequence space: two different approaches to dihydrofolate reductase catalysis. ChemBioChem 6, 590–600 10.1002/cbic.200400237 [DOI] [PubMed] [Google Scholar]
  16. Jacoby G., Cattoir V., Hooper D., Martínez-Martínez L., Nordmann P., Pascual A., et al. (2008). qnr gene nomenclature. Antimicrob. Agents Chemother. 52, 2297–2299 10.1128/AAC.00147-08 [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kadlec K., Schwarz S. (2009). Identification of a novel trimethoprim resistance gene, dfrK, in a methicillin-resistant Staphylococcus aureus ST398 strain and its physical linkage to the tetracycline resistance gene tet(L). Antimicrob. Agents Chemother. 53, 776–778 10.1128/AAC.01128-08 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kadlec K., von Czapiewski E., Kaspar H., Wallmann J., Michael G. B., Steinacker U., et al. (2011). Molecular basis of sulfonamide and trimethoprim resistance in fish-pathogenic Aeromonas isolates. Appl. Environ. Microbiol. 77, 7147–7150 10.1128/AEM.00560-11 [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kehrenberg C., Aarestrup F. M., Schwarz S. (2007). IS21-558 Insertion sequences are involved in the mobility of the multiresistance gene cfr. Antimicrob. Agents Chemother. 51, 483–487 10.1128/AAC.01340-06 [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kehrenberg C., Cuny C., Strommenger B., Schwarz S., Witte W. (2009). Methicillin-resistant and -susceptible Staphylococcus aureus strains of clonal lineages ST398 and ST9 from swine carry the multidrug resistance gene cfr. Antimicrob. Agents Chemother. 53, 779–781 10.1128/AAC.01376-08 [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kehrenberg C., Schwarz S., Jacobsen L., Hansen L. H., Vester B. (2005). A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol. Microbiol. 57, 1064–1073 10.1111/j.1365-2958.2005.04754.x [DOI] [PubMed] [Google Scholar]
  22. Levings R. S., Lightfoot D., Elbourne L. D. H., Djordjevic S. P., Hall R. M. (2006). New integron-associated gene cassette encoding a trimethoprim-resistant DfrB-type dihydrofolate reductase. Antimicrob. Agents Chemother. 50, 2863–2865 10.1128/AAC.00449-06 [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Long K. S., Vester B. (2012). Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob. Agents Chemother. 56, 603–612 10.1128/AAC.05702-11 [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Liu Y., Wang Y., Wu C., Shen Z., Schwarz S., Du X. D., et al. (2012). First report of the multidrug resistance gene cfr in Enterococcus faecalis of animal origin. Antimicrob. Agents Chemother. 56, 1650–1654 10.1128/AAC.06091-11 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Magnet S., Blanchard J. S. (2005). Molecular insights into aminoglycoside action and resistance. Chem. Rev. 105, 477–497 10.1021/cr0301088 [DOI] [PubMed] [Google Scholar]
  26. Olson A. B., Silverman M., Boyd D. A., McGeer A., Willey B. M., Pong-Porter V., et al. (2005). Identification of a progenitor of the CTX-M-9 group of extended-spectrum β-lactamases from Kluyvera georgiana isolated in Guyana. Antimicrob. Agents Chemother. 49, 2112–2115 10.1128/AAC.49.5.2112-2115.2005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Partridge S. R., Tsafnat G., Coiera E., Iredell J. R. (2009). Gene cassettes and cassette arrays in mobile resistance integrons: review article. FEMS Microbiol. Rev. 33, 757–784 10.1111/j.1574-6976.2009.00175.x [DOI] [PubMed] [Google Scholar]
  28. Périchon B., Courvalin P., Galimand M. (2007). Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli. Antimicrob. Agents Chemother. 51, 2464–2469 10.1128/AAC.00143-07 [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ramirez M. S., Tolmansky M. E. (2010). Aminoglycoside modifying enzymes. Drug Resist. Updat. 13, 151–171 10.1016/j.drup.2010.08.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Roberts M. C. (1996). Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev. 19, 1–24 [DOI] [PubMed] [Google Scholar]
  31. Roberts M. C. (2002). Resistance to tetracycline, macrolide-lincosamide-streptogramin, trimethoprim, and sulfonamide drug classes. Mol. Biotechn. 20, 261–284 10.1385/MB:20:3:261 [DOI] [PubMed] [Google Scholar]
  32. Roberts M. C. (2005). Update on acquired tetracycline resistance genes. FEMS Microbiol. Lett. 245, 195–203 10.1016/j.femsle.2005.02.034 [DOI] [PubMed] [Google Scholar]
  33. Roberts M. C. (2008). Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol. Lett. 282, 147–159 10.1111/j.1574-6968.2008.01145.x [DOI] [PubMed] [Google Scholar]
  34. Roberts M. C., Schwarz S. (2009). Tetracycline and chloramphenicol resistance mechanisms, in Antimicrobial Drug Resistance: Mechanisms of Drug Resistance, ed Mayers D. L. (New York, NY: Humana Press, c/o Springer Science+Business Media; ). [Google Scholar]
  35. Roberts M. C., Sutcliffe J., Courvalin P., Jensen L. B., Rood J., Seppala H. (1999). Nomenclature for macrolide and macrolide-lincosamide streptogramin B antibiotic resistance determinants. Antimicrob. Agents Chemother. 43, 2823–2830 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Saladin M., Cao V. T. B., Lambert T., Donay J.-L., Herrmann J.-L., Ould-Hocine Z., et al. (2002). Diversity of CTX-M β-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol. Lett. 209, 161–168 [DOI] [PubMed] [Google Scholar]
  37. Schwarz S., Kehrenberg C., Doublet B., Cloeckaert A. (2004). Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev. 28, 519–542 10.1016/j.femsre.2004.04.001 [DOI] [PubMed] [Google Scholar]
  38. Shaw K. J., Barbachyn M. R. (2011). The oxazolidinones: past, present, and future. Ann. N.Y. Acad. Sci. 1241, 48–70 10.1111/j.1749-6632.2011.06330.x [DOI] [PubMed] [Google Scholar]
  39. Shaw K. J., Rather P. N., Hare R. S., Miller G. H. (1993). Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol. Rev. 57, 138–163 [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Shore A. C., Brennan O. M., Ehricht R., Monecke S., Schwarz S., Slickers P., et al. (2010). Identification and characterization of the multidrug resistance gene cfr in a Panton-Valentine leukocidin-positive sequence type 8 methicillin-resistant Staphylococcus aureus IVa (USA300) isolate. Antimicrob. Agents Chemother. 54, 4978–4984 10.1128/AAC.01113-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Strahilevitz J., Jacoby G. A., Hooper D. C., Robicsek A. (2009). Plasmid-mediated quinolone resistance: a multifaceted threat. Clin. Microbiol. Rev. 22, 664–689 10.1128/CMR.00016-09 [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Torpdahl M., Hammerum A. M., Zachariasen C., Nielsen E. M. (2009). Detection of qnr genes in Salmonella isolated from humans in Denmark. J. Antimicrob. Chemother. 63, 406–408 10.1093/jac/dkn492 [DOI] [PubMed] [Google Scholar]
  43. Vakulenko S. B., Mobashery S. (2003). Versatility of aminoglycosides and prospects for their future. Clin. Microbiol. Rev. 16, 430–450 10.1128/CMR.16.3.430-450.2003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. van Hoek A. H. A. M., Mevius D., Guerra B., Mullany P., Roberts A. P., Aarts H. J. M. (2011). Acquired antibiotic resistance genes: an overview. Front. Microbio. 2:203 10.3389/fmicb.2011.00203 [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wang Y., He T., Schwarz S., Zhou D., Shen Z., Wu C., et al. (2012). Detection of the staphylococcal multiresistance gene cfr in Escherichia coli of domestic-animal origin. J. Antimicrob. Chemother. [Epub ahead of print]. 10.1093/jac/dks020 [DOI] [PubMed] [Google Scholar]
  46. Wang Y., Wang Y., Wu C. M., Schwarz S., Shen Z., Zhang W., et al. (2011). Detection of the staphylococcal multiresistance gene cfr in Proteus vulgaris of food animal origin. J. Antimicrob. Chemother. 66, 2521–2526 10.1093/jac/dkr322 [DOI] [PubMed] [Google Scholar]
  47. Weisblum B. (1995). Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39, 577–585 10.1128/AAC.39.3.577 [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Weldhagen G. F., Kim B., Cho C.-H., Lee S. H. (2006). Definitive nomenclature of GES/IBC-type extended-spectrum β-lactamases. J. Microbiol. Biotechnol. 16, 1837–1840 [Google Scholar]
  49. Wu H. Y., Miller G. H., Guzmán Blanco M., Hare R. S., Shaw K. J. (1997). Cloning and characterization of an aminoglycoside 6′-N-acetyltransferase gene from Citrobacter freundii which confers an altered resistance profile. Antimicrob. Agents Chemother. 41, 2439–2447 [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Yamane K., Wachino J. I., Suzuki S., Kimura K., Shibata N., Kato H., et al. (2007). New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob. Agents Chemother. 51, 3354–3360 10.1128/AAC.00339-07 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Frontiers in Microbiology are provided here courtesy of Frontiers Media SA

RESOURCES