A commentary on
Acquired antibiotic resistance genes: an overview
by van Hoek, A. H. A. M., Mevius, D., Guerra, B., Mullany, P., Roberts, A. P., and Aarts, H. J. M. (2011). Front. Microbio. 2:203. doi: 10.3389/fmicb.2011.00203
Dr. Marilyn C. Roberts and Dr. Stefan Schwarz have contacted the authors of the original publication with several comments and suggestions to better harmonize the correct nomenclature of the antibiotic resistance genes, as the gene names were not always correctly presented in the various tables given.
Authors often pick their own gene names which in many cases have been approved for use for other genetically distinct genes or give names to determinants which were already given an approved designated name. Therefore, we (Dr. Marilyn C. Roberts and Dr. Stefan Schwarz and Dr. Henk J. M. Aarts on behalf of the authors of the original publication) would like to present here the correct nomenclature and mechanistic features of the antibiotic resistance genes belonging to the following classes: Aminoglycosides (Table 1), Phenicols (Table 3), Macrolides–Lincosamides–Streptogramin B (Table 4), Quinolones (Table 5), Tetracyclines (Table 6), and Trimethoprim (Table 7). In addition some additional information is given on the various classes of antibiotic resistance genes as also a section regarding the antibiotic class Oxazolidinones has been added. Table 2 was correctly displayed by van Hoek et al. (2011) but has been updated.
Table 1.
Mechanism | Gene name | Length (nt) | Accession number or reference | Coding region | Genera |
---|---|---|---|---|---|
ACT | aac(2′)-Ia | 537 | L06156 | 264… 800 | Providencia |
aac(2′)-Ib | 588 | U41471 | 265… 852 | Mycobacterium | |
aac(2′)-Ic | 546 | U72714 | 373… 918 | Mycobacterium | |
aac(2′)-Id | 633 | U72743 | 386… 1018 | Mycobacterium | |
aac(2′)-Ie | 549 | NC_011896 | 3039059… 3039607 | Mycobacterium | |
aac(3)-I | 465 | AJ877225 | 5293… 5757 | Pseudomonas | |
aac(3)-Ia | 534 | X15852 | 1250… 1783 | Acinetobacter, Escherichia, Klebsiella, Salmonella, Serratia, Streptomyces | |
aac(3)-Ib | 531 | L06157 | 555… 1085 | Pseudomonas | |
aac(3)-Ib-aac(6′)-Ib | 1005 | AF355189 | 1435… 2439 | Pseudomonas | |
aac(3)-Ic | 471 | AJ511268 | 1295… 1765 | Pseudomonas | |
aac(3)-Id | 477 | AB114632 | 104… 580 | Proteus, Pseudomonas, Salmonella, Vibrio | |
aac(3)-Ie | 477 | AY463797 | 8583… 9059 | Proteus, Pseudomonas, Salmonella, Vibrio | |
aac(3)-If | 465 | AY884051 | 61… 525 | Serratia, Pseudomonas | |
aac(3)-Ig | 477 | CP000282 | 2333620… 2334096 | Saccharophagus | |
aac(3)-Ih | 459 | CP000490 | 509912… 510370 | Paracoccus | |
aac(3)-Ii | 459 | CP000356 | 638262… 638720 | Sphingopyxis | |
aac(3)-Ij | 465 | CP000155 | 6963012… 6963476 | Hahella | |
aac(3)-Ik | 444 | BX571856 | 765853… 766296 | Staphylococcus | |
aac(3)-IIa | 861 | X51534 | 91… 951 | Acinetobacter, Enterobacter, Escherichia, Klebsiella, Pseudomonas, Salmonella | |
aac(3)-IIb | 810 | M97172 | 656… 1465 | Serratia | |
aac(3)-IIc | 861 | X54723 | 819… 1679 | Escherichia | |
aac(3)-IId | 861 | EU022314 | 1… 861 | Escherichia | |
aac(3)-IIe | 861 | EU022315 | 1… 861 | Escherichia | |
aac(3)-IIIa | 816 | X55652 | 1124… 1939 | Pseudomonas | |
aac(3)-IIIb | 738 | L06160 | 984… 1721 | Pseudomonas | |
aac(3)-IIIc | 840 | L06161 | 106… 945 | Pseudomonas | |
aac(3)-IVa | 786 | X01385 | 244… 1029 | Escherichia | |
aac(3)-Va; | |||||
see aac(3)-IIa | |||||
aac(3)-Vb; | |||||
see aac(3)-IIb | |||||
aac(3)-VIa | 900 | M88012 | 193… 1092 | Enterobacter, Escherichia, Salmonella | |
aac(3)-VIIa | 867 | M22999 | 493… 1359 | Streptomyces | |
aac(3)-VIIIa | 861 | M55426 | 466… 1326 | Streptomyces | |
aac(3)-IXa | 846 | M55427 | 274… 1119 | Micromonospora | |
aac(3)-Xa | 855 | AB028210 | 2711… 3565 | Streptomyces | |
aac(6′) | 441 | AY553333 | 1392… 1832 | Pseudomonas | |
aac | 555 | AJ628983 | 1985… 2539 | Pseudomonas | |
aac(6′) | 402 | DQ302723 | 81… 482 | Pseudomonas | |
aac(6′) | 555 | EU912537 | 2092… 2646 | Pseudomonas | |
aac(6′)-Ia | 558 | M18967 | 757… 1314 | Citrobacter, Escherichia, Klebsiella, Shigella | |
aac(6′)-Ib | 606 | M21682 | 380… 985 | Klebsiella, Proteus, Pseudomonas | |
aac(6′)-Ib-cr | 519 | EF636461 | 1124… 1642 | Enterobacter, Escherichia, Klebsiella, Pseudomonas, Salmonella | |
aac(6′)-Ic | 441 | M94066 | 1554… 1994 | Serratia | |
aac(6′)-Id | 450 | X12618 | 905… 1354 | Klebsiella | |
aac(6′)-Ie; | |||||
see aac(6′)-aph(2″) | |||||
aac(6′)-If | 435 | X55353 | 279… 713 | Enterobacter | |
aac(6′)-Ig | 438 | L09246 | 544… 981 | Acinetobacter | |
aac(6′)-Ih | 441 | L29044 | 352… 792 | Acinetobacter | |
aac(6′)-Ii | 549 | L12710 | 169… 717 | Enterococcus | |
aac(6′)-Ij | 441 | L29045 | 260… 700 | Acinetobacter | |
aac(6′)-Ik | 438 | L29510 | 369… 806 | Acinetobacter | |
aac(6′)-Il | 522 | Z54241 | 530… 1051 | Acinetobacter, Citrobacter | |
aac(6′)-Im | 537 | AF337947 | 1215… 1751 | Escherichia | |
aac(6′)-In | 573 | Wu et al., 1997 | – | Citrobacter | |
aac(6′)-Iq | 552 | AF047556 | 127… 678 | Klebsiella, Salmonella | |
aac(6′)-Ir | 441 | AF031326 | 1… 441 | Acinetobacter | |
aac(6′)-Is | 441 | AF031327 | 1… 441 | Acinetobacter | |
aac(6′)-It | 441 | AF031328 | 1… 441 | Acinetobacter | |
aac(6′)-Iu | 441 | AF031329 | 1… 441 | Acinetobacter | |
aac(6′)-Iv | 441 | AF031330 | 1… 441 | Acinetobacter | |
aac(6′)-Iw | 441 | AF031331 | 1… 441 | Acinetobacter | |
aac(6′)-Ix | 441 | AF031332 | 1… 441 | Acinetobacter | |
aac(6′)-Iy | 438 | AF144880 | 3452… 3979 | Salmonella | |
aac(6′)-Iz | 462 | AF140221 | 390… 851 | Stenotrophomonas | |
aac(6′)-Iaa | 438 | NC_003197 | 1707358… 1707795 | Salmonella | |
aac(6′)-Iad | 435 | AB119105 | 1… 435 | Acinetobacter | |
aac(6′)-Iae | 552 | AB104852 | 1935… 2486 | Pseudomonas, Salmonella | |
aac(6′)-Iaf | 552 | AB462903 | 1200… 1751 | Pseudomonas | |
aac(6′)-Iai | 567 | EU886977 | 544… 1110 | Pseudomonas | |
aac(6′)-I30 | 555 | AY289608 | 1524… 2078 | Salmonella | |
aac(6′)-31 | 519 | AJ640197 | 2474… 2992 | Acinetobacter | |
aac(6′)-32 | 555 | EF614235 | 2247… 2801 | Pseudomonas | |
aac(6′)-33 | 555 | GQ337064 | 1203… 1757 | Pseudomonas | |
aac(6′)-IIa | 555 | M29695 | 707… 1261 | Aeromonas, Klebsiella, Pseudomonas, Salmonella | |
aac(6′)-IIb | 543 | L06163 | 532… 1074 | Pseudomonas | |
aac(6′)-IIc | 582 | AF162771 | 62… 643 | Enterobacter, Klebsiella, Pseudomonas | |
aac(6′)-Iid; | |||||
see ant(3″)-Ih- aac(6′)-IId | |||||
aac(6′)-III; | |||||
see aac(6′)-Ic | |||||
aac(6′)-IV | 435 | X55353 | 279… 713 | Enterobacter | |
aacA29 | 381 | AY139599 | 768… 1148 | Unknown | |
aacA43 | 564 | HQ247816 | 639… 1202 | Klebsiella | |
apmA | 822 | FN806789 | 2858… 3682 | Staphylococcus | |
sat2a | 525 | X51546 | 518… 1042 | Acinetobacter, Enterobacter, Escherichia, Klebsiella, Proteus, Pseudomonas, Salmonella, Shigella, Vibrio | |
sat3a | 543 | Z48231 | 221… 763 | Escherichia | |
sat4a | 543 | X92945 | 38870… 39412 | Campylobacter, Enterococcus, Staphylococcus,Streptococcus | |
aac(6′)-aph(2″) | 1440 | M13771 | 304… 1743 | Enterococcus, Lactobacillus, Staphylococcus,Streptococcus | |
ACT–PHT | aph(2″-Ia; see | ||||
aac(6′)-aph(2″) | |||||
MET | armA | 774 | AY220558 | 1978… 2751 | Acinetobacter, Citrobacter, Enterobacter, Escherichia, Klebsiella, Salmonella, Serratia |
npmA | 660 | AB261016 | 3069… 3728 | Escherichia | |
rmtA | 756 | AB120321 | 6677… 7432 | Pseudomonas | |
rmtB | 756 | AB103506 | 1410… 2165 | Enterobacter, Escherichia, Klebsiella, Pseudomonas, Serratia | |
rmtC | 846 | AB194779 | 6903… 7748 | Proteus, Salmonella | |
rmtD | 744 | DQ914960 | 8889… 9632 | Klebsiella, Pseudomonas | |
rmtD2 | 744 | HQ401565 | 14139… 14882 | Citrobacter, Enterobacter | |
rmtE | 822 | GU201947 | 55… 876 | Escherichia | |
NUT | aadA1 | 972 | X02340 | 223… 1194 | Acinetobacter, Aeromonas, Enterobacter, Escherichia, Klebsiella, Proteus, Pseudomonas, Salmonella, Shigella, Vibrio |
aadA1b | 792 | M95287 | 3320… 4111 | Pseudomonas, Serratia | |
aadA2 | 780 | X68227 | 166… 945 | Acinetobacter, Aeromonas, Citrobacter, Enterobacter, Escherichia, Klebsiella, Proteus, Pseudomonas, Salmonella, Shigella, Staphylococcus, Vibrio, Yersinia | |
aadA3 | 792 | AF047479 | 1296… 2087 | Escherichia | |
aadA4 | 789 | Z50802 | 1306… 2094 | Acinetobacter, Aeromonas, Escherichia, Pseudomonas, | |
aadA5 | 789 | AF137361 | 64… 852 | Acinetobacter, Aeromonas, Escherichia, Pseudomonas, Salmonella, Shigella, Staphylococcus, Vibrio | |
aadA6 | 846 | AF140629 | 61… 906 | Pseudomonas | |
aadA7 | 798 | AF224733 | 32… 829 | Escherichia, Salmonella, Vibrio | |
aadA8 | 792 | AF326210 | 1… 792 | Klebsiella, Vibrio | |
aadA8b | 792 | AM040708 | 1174… 1965 | Escherichia | |
aadA9 | 837 | AJ420072 | 26773… 27609 | Corynebacterium | |
aadA10 | 834 | U37105 | 2807… 3640 | Pseudomonas | |
aadA11 | 846 | AY144590 | 1… 846 | Pseudomonas, Riemerella | |
aadA12 | 792 | AY665771 | 1… 792 | Escherichia, Salmonella, Yersinia | |
aadA13 | 798 | AY713504 | 1… 798 | Escherichia, Pseudomonas, Yersinia | |
aadA14 | 786 | AJ884726 | 540… 1325 | Pasteurella | |
aadA15 | 792 | DQ393783 | 1800… 2591 | Pseudomonas | |
aadA16 | 846 | EU675686 | 3197… 4042 | Escherichia, Klebsiella, Vibrio | |
aadA17 | 792 | FJ460181 | 774… 1565 | Aeromonas | |
aadA21 | 792 | AY171244 | 47… 838 | Salmonella | |
aadA22 | 792 | AM261837 | 74… 865 | Escherichia, Salmonella | |
aadA23 | 780 | AJ809407 | 119… 898 | Salmonella | |
aadA24 | 780 | AM711129 | 1264… 2043 | Escherichia, Salmonella | |
aadC | 477 | V01282 | 225… 701 | Staphylococcus | |
aadD aadE; see ant(6)-Ia | 771 | AF181950 | 3176… 3946 | Staphylococcus | |
ant(2″)-Ia | 543 | X04555 | 1296… 1829 | Acinetobacter, Enterobacter, Escherichia, Klebsiella, Proteus, Pseudomonas, Salmonella, Serratia, Shigella, Vibrio | |
ant(4′)-Ib | 771 | AJ506108 | 209… 979 | Bacillus | |
ant(4′)-IIa | 759 | M98270 | 145… 903 | Pseudomonas | |
ant(4′)-IIb | 756 | AY114142 | 1061… 1816 | Pseudomonas | |
ant(6)-Ia | 909 | AF330699 | 22… 930 | Enterococcus, Staphylococcus | |
ant(6)-Ib | 858 | FN594949 | 27482… 28339 | Campylobacter | |
ant(9)-Ia | 783 | X02588 | 331… 1113 | Enterococcus, Staphylococcus | |
ant(9)-Ib | 768 | M69221 | 271… 1038 | Enterococcus, Staphylococcus | |
spc; see ant(9)-Ia | |||||
sph | 801 | X64335 | 6557… 7354 | Escherichia, Pseudomonas, Salmonella | |
str | 849 | X92946 | 18060… 18908 | Enterococcus, Staphylococcus, Lactococcus | |
NUT–ACT | ant(3″)-Ih-aac(6′)-IId | 1392 | AF453998 | 3555… 4946 | Serratia |
PHT | aph(2″)-Ib | 900 | AF337947 | 272… 1171 | Enterococcus, Escherichia |
aph(2″)-Ic | 921 | U51479 | 196… 1116 | Enterococcus | |
aph(2″)-Id | 906 | AF016483 | 131… 1036 | Enterococcus | |
aph(2″)-Ie | 906 | AY743255 | 131… 1036 | Enterococcus | |
aph(3′)-Ia | 816 | J01839 | 1162… 1977 | Escherichia, Klebsiella, Pseudomonas, Salmonella | |
aph(3′)-Ib | 816 | M20305 | 779… 1594 | Escherichia | |
aph(3′)-Ic | 816 | X625115 | 410… 1225 | Acinetobacter, Citrobacter, Escherichia, Klebsiella, Salmonella, Serratia, Yersinia | |
aph(3′)-Id | 816 | Z48231 | 820… 1635 | Escherichia | |
aph(3′)-IIa | 795 | X57709 | 1… 795 | Escherichia, Pseudomonas, Salmonella | |
aph(3′)-IIb | 807 | X90856 | 388… 1194 | Pseudomonas | |
aph(3′)-IIc | 813 | AM743169 | 2377498… 2378310 | Stenotrophomonas | |
aph(3′)-III | 795 | M26832 | 604… 1398 | Bacillus, Campylobacter, Enterococcus, Staphylococcus, Streptococcus | |
aph(3′)-IV | 789 | X03364 | 277… 1065 | Bacillus | |
aph(3′)-Va | 807 | K00432 | 307… 1113 | Streptomyces | |
aph(3′)-Vb | 792 | M22126 | 373… 1164 | Streptomyces | |
aph(3′)-Vc | 795 | S81599 | 282… 1076 | Micromonospora | |
aph(3′)-Va | 780 | X07753 | 103… 882 | Acinetobacter, Pseudomonas | |
aph(3′)-VIb | 780 | AJ627643 | 4934… 5713 | Alcaligenes | |
aph(3′)-VIIa | 753 | M29953 | 131… 1036 | Campylobacter | |
aph(3′)-VIII | 804 | AF182845 | 1… 804 | Streptomyces | |
aph(3′)-XV | 795 | Y18050 | 4758… 5552 | Achromobacter, Citrobacter, Pseudomonas | |
aph(3″)-Ia | 819 | M16482 | 501… 1319 | Streptomyces | |
aph(3″)-Ib | 801 | AB366441 | 11310… 12110 | Enterobacter, Escherichia, Klebsiella, Pasteurella, Pseudomonas, Salmonella, Shigella, Yersinia, Vibrio | |
aph(4)-Ia | 1026 | V01499 | 231… 1256 | Escherichia | |
aph(4)-Ib | 999 | X03615 | 232… 1230 | Streptomyces | |
aph(6)-Ia | 924 | AY971801 | 1… 924 | Streptomyces | |
aph(6)-Ib | 924 | X05648 | 382… 1305 | Streptomyces | |
aph(6)-Ic | 801 | X01702 | 485… 1285 | Escherichia, Pseudomonas, Salmonella | |
aph(6)-Id | 837 | M28829 | 866… 1702 | Enterobacter, Escherichia, Klebsiella, Pasteurella, Pseudomonas, Salmonella, Shigella, Yersinia, Vibrio | |
aph(7″)-Ia | 999 | X03615 | 232… 1230 | Streptomyces | |
aph(9)-Ia | 996 | U94857 | 151… 1146 | Legionella | |
aph(9)-Ib | 993 | U70376 | 7526… 8518 | Streptomyces |
Last update: January 6th 2012. This table was adapted from Elbourne and Hall (2006), Magnet and Blanchard (2005), Partridge et al. (2009), Ramirez and Tolmansky (2010), Shaw et al. (1993), Vakulenko and Mobashery (2003), and data provided by B. Guerra, B. Aranda, D. Avsaroglu, B. Ruiz del Castillo, and R. Helmuth, on behalf of the Med-Vet Net (EU Network of Excellence) WP29 Project Group. The data were collected within the subproject “AME's,” with following participants representing their institutions: Agnes Perry Guyomard (ANSES), Dik Mevius (CVI), Yvonne Agerso (DTU), Katie Hopkins (HPA), Silvia Herrera (ISCIII), Alessandra Carattoli (ISS), Antonio Battisti (IZS-Rome), Stefano Lollai (IZS-Sardegna,), Lotte Jacobsen (SSI), Béla Nagy (VMRI), M. Rosario Rodicio and M. C. Mendoza (University of Oviedo, UO), Luis Martínez-Martínez (University Hospital of Valdecilla, HUV), and Bruno Gonzalez-Zorn (UCM).
ACT: Acetyltransferase; MET: Methyltransferase; NUT: Nucleotidyltransferase; PHT: Phosphotransferase.
Although the sat genes are not aminoglycoside resistance determinants, they encode streptothricin-acetyltransferases, for convenience they are included in this table.
Table 3.
Mechanism | Group | Gene | Gene(s) included | Length (nt) | Accession number | Coding region | Genera |
---|---|---|---|---|---|---|---|
Efflux | Type E-1 | cmlA1 | cmlA, cmlA2, cmlA4, cmlA5, cmlA6, cmlA7, cmlA8, cmlA10, cmlB | 1260 | M64556 | 601… 1860 | Acinetobacter, Aeromonas, Arcanobacterium, Enterobacter, Escherichia, Klebsiella, Laribacter, Pseudomonas, Salmonella, Serratia, Staphylococcus |
Type E-2 | cml | − | 903 | M22614 | 427… 1335 | Escherichia | |
Type E-3 | floR | cmlA-like, flo, pp-flo, cmlA9 | 1215 | AF071555 | 4445… 5659 | Acinetobacter, Aeromonas, Bordetella, Escherichia, Pasteurella, Salmonella, Stenotrophomonas, Vibrio | |
Type E-4 | fexA | − | 1428 | AJ549214 | 177… 1604 | Bacillus, Staphylococcus | |
Type E-5 | cml | − | 1179 | X59968 | 508… 1686 | Streptomyces | |
Type E-6 | cmlv | − | 1311 | U09991 | 28… 1338 | Streptomyces | |
Type E-7 | cmrA | cmr | 1176 | Z12001 | 993… 2168 | Rhodococcus | |
Type E-8 | cmr | cmx | 1176 | U85507 | 3518… 4693 | Corynebacterium | |
− | cmlB1 | − | 1266 | AM296481 | 776… 2041 | Bordetella | |
− | fexB | − | 1410 | JN192453 | 10637… 12046 | Enterococcus | |
− | pexA | − | 1248 | HM537013 | 24055… 25302 | Uncultured | |
Inactivating enzyme | Type A-1 | catA1 | cat, catI, pp-cat | 660 | V00622 | 244… 903 | Acinetobacter, Corynebacterium, Escherichia, Klebsiella, Salmonella, Shigella |
Type A-2 | catA2 | cat, catII | 642 | X53796 | 187… 828 | Aeromonas, Agrobacterium, Escherichia, Haemophilus, Legionella, Klebsiella, Photobacterium, Salmonella, Vibrio | |
Type A-3 | catA3 | cat, catIII | 642 | X07848 | 272… 913 | Actinobacillus, Edwardsiella, Klebsiella, Mannheimia, Pasteurella, Shigella | |
Type A-4 | cat | − | 654 | M11587 | 880… 1533 | Proteus | |
Type A-5 | cat | − | 663 | P20074$ | 1002758… 1003420 | Streptomyces | |
Type A-6 | cat86 | − | 663 | K00544 | 145… 807 | Bacillus | |
Type A-7 | cat(pC221) | cat, catC | 648 | X02529 | 2267… 2914 | Bacillus, Enterococcus, Lactobacillus, Staphylococcus, Streptococcus | |
Type A-8 | cat(pC223) | cat | 648 | AY355285 | 1000… 1647 | Enterococcus, Lactococcus, Listeria, Staphylococcus | |
Type A-9 | cat(pC194) | cat, cat-TC | 651 | NC_002013 | 1260… 1910 | Bacillus, Enterococcus, Lactobacillus, Staphylococcus, Streptococcus | |
Type A-10 | cat | − | 687 | AY238971 | 1055… 1741 | Bacillus | |
Type A-11 | catP | catD | 624 | U15027 | 2953… 3576 | Clostridium, Neisseria | |
Type A-12 | catS | − | 492§ | X74948 | 1… 492 | Streptococcus | |
Type A-13 | cat | − | 624 | M35190 | 309… 932 | Campylobacter | |
Type A-14 | cat | − | 651 | S48276 | 479… 1129 | Listonella, Photobacterium, Proteus, Vibrio | |
Type A-15 | catB | − | 660 | M93113 | 145… 804 | Clostridium | |
Type A-16 | catQ | − | 660 | M55620 | 459… 1118 | Clostridium | |
Type B-1 | catB1 | cat | 630 | M58472 | 148… 777 | Agrobacterium | |
Type B-2 | catB2 | − | 633 | AF047479 | 5957… 6589 | Acinetobacter, Aeromonas, Bordetella, Escherichia, Klebsiella, Pasteurella, Pseudomonas, Salmonella | |
Type B-3 | catB3 | catB4, catB5, catB6, catB8 | 633 | AJ009818 | 883… 1515 | Acinetobacter, Aeromonas, Bordetella, Comamonas, Enterobacter, Escherichia, Klebsiella, Kluyvera, Morganella, Proteus, Pseudomonas, Salmonella, Serratia, Stenotrophomonas | |
Type B-4 | catB7 | − | 639 | AF036933 | 177… 815 | Pseudomonas | |
Type B-5 | catB9 | − | 630 | AF462019 | 27… 656 | Vibrio | |
Type B-6 | catB10 | − | 633 | AJ878850 | 1197… 1829 | Pseudomonas | |
rRNA methylase | − | cfr$ | − | 1050 | AJ579365 | 6290… 7339 | Bacillus, Enterococcus, Escherichia, Jeotgalicoccus, Macrococcus, Proteus, Staphylococcus |
Table 4.
Mechanism | Gene | Gene(s) included | Length (nt) | Accession number | Coding region | Genera |
---|---|---|---|---|---|---|
Efflux | car(A) | − | 1656 | M80346 | 411… 2066 | Streptomyces |
lmr(A) | − | 1446 | X59926 | 318… 1763 | Streptomyces | |
lsa(A) | abc-23 | 1497 | AY225127 | 41… 1537 | Enterococcus | |
lsa(B) | orf3 | 1479 | AJ579365 | 4150… 5628 | Staphylococcus | |
lsa(C) | − | 1479 | HM990671 | 5193… 6671 | Gardnerella, Streptococcus | |
lsa(E) | − | 1485 | JQ861959 | 6673… 8157 | Enterococcus, Staphylococcus | |
mef(A) | mef(E) | 1218 | U70055 | 314… 1531 | Acinetobacter, Bacteroides, Citrobacter, Clostridium, Corynebacterium, Enterococcus, Enterobacter, Escherichia, Fusobacterium, Gemella, Haemophilus, Klebsiella, Lactobacillus, Micrococcus, Morganella, Neisseria, Pantoea, Providencia, Proteus, Ralstonia, Rothia, Pseudomonas, Salmonella, Serratia, Staphylococcus, Streptococcus, Stenotrophomonas, Ureaplasma | |
mef(B) | − | 1230 | FJ196385 | 11084… 12313 | Escherichia | |
msr(A) | msr(B), msr(SA) | 1467 | X52085 | 343… 1809 | Corynebacterium, Enterobacter, Enterococcus, Gemella, Pseudomonas, Staphylococcus, Streptococcus, Ureaplasma | |
msr(C) | − | 1479 | AY004350 | 496… 1974 | Enterococcus | |
msr(D) | mel, orf5 | 1464 | AF274302 | 2462… 3925 | Acinetobacter, Bacteroides, Citrobacter, Clostridium, Corynebacterium, Enterococcus, Enterobacter, Escherichia, Gemella, Fusobacterium, Klebsiella, Morganella, Neisseria, Proteus, Providencia, Pseudomonas, Ralstonia, Staphylococcus, Streptococcus, Serratia, Stenotrophomonas, Ureaplasma | |
msr(E) | mel | 1476 | AY522431 | 20650… 22125 | Acinetobacter, Citrobacter, Escherichia, Klebsiella, Mannheimia, Pasteurella, Serratia | |
ole(B) | − | 1710 | L36601 | 1421… 3130 | Streptomyces | |
ole(C) | − | 978 | L06249 | 1528… 2505 | Streptomyces | |
srm(B) | − | 1653 | X63451 | 558… 2210 | Streptomyces | |
tlc(C) | − | 1647 | M57437 | 277… 1923 | Streptomyces | |
vga(A) | vga | 1569 | M90056 | 909… 2477 | Staphylococcus | |
vga(A)LC | vga | 1569 | DQ823382 | 1… 1569 | Staphylococcus | |
vga(B) | − | 1659 | U82085 | 629… 2287 | Enterococcus, Staphylococcus | |
vga(C) | − | 1569 | NC_013034 | 12570… 14138 | Staphylococcus | |
vga(D) | − | 1578 | GQ205627 | 1394… 2971 | Enterococcus | |
vga(E) | − | 1575 | FR772051 | 8741… 10315 | Staphylococcus | |
Inactivating enzymea | ere(A) | − | 1221 | AY183453 | 2730… 3950 | Achromobacter, Aermonas, Citrobacter, Enterobacter, Escherichia, Klebsiella, Laribacter, Pantoeae, Providencia, Pseudomonas, Serratia, Salmonella, Staphylococcus, Stenotrophomonas |
ere(B) | − | 1260 | X03988 | 383… 1642 | Acinetobacter, Citrobacter, Enterobacter, Escherichia, Klebsiella, Proteus, Pseudomonas, Staphylococcus | |
Inactivating enzymeb | vgb(A) | vgb | 900 | M20129 | 641… 1540 | Enterococcus, Staphylococcus |
vgb(B) | − | 888 | AF015628 | 399… 1286 | Staphylococcus | |
Inactivating enzymec | lnu(A) | lin(A), lin(A') | 486 | M14039 | 413… 898 | Clostridium, Lactobacillus, Staphylococcus |
lnu(B) | lin(B) | 804 | AJ238249 | 127… 930 | Clostridium, Enterococcus, Staphylococcus, Streptococcus | |
lnu(C) | − | 495 | AY928180 | 1150… 1644 | Haemophilus, Streptococcus | |
lnu(D) | − | 495 | EF452177 | 19… 513 | Streptococcus | |
lnu(F) | lin(F), lin(G), linF | 822 | EU118119 | 1030… 1851 | Escherichia, Salmonella | |
vat(A) | − | 660 | L07778 | 258… 917 | Staphylococcus | |
vat(B) | − | 639 | U19459 | 67… 705 | Enterococcus, Staphylococcus | |
vat(C) | − | 639 | AF015628 | 1307… 1945 | Staphylococcus | |
vat(D) | sat(A) | 630 | L12033 | 162… 791 | Enterococcus | |
vat(E) | sat(G), vat (E-3)–vat(E-8) | 645 | AF139725 | 63… 707 | Enterococcus, Lactobacillus | |
vat(F) | − | 666 | AF170730 | 70… 735 | Yersinia | |
vat(H) | vat(G) | 651 | GQ205627 | 3037… 3687 | Enterococcus | |
Inactivating enzymed | mph(A) | mph(K) | 906 | D16251 | 1626… 2531 | Aeromonas, Escherichia, Citrobacter, Enterobacter, Klebsiella, Pantoeae, Pseudomonas, Proteus, Serratia, Shigella, Stenotrophomonas |
mph(B) | mph(B) | 909 | D85892 | 1159… 2067 | Escherichia, Enterobacter, Proteus, Pseudomonas | |
mph(C) | mph(BM) | 900 | AF167161 | 5665… 6564 | Staphylococcus, Stenotrophomonas | |
mph(D) | − | 840§ | AB048591 | 1… 840 | Escherichia, Klebsiella, Pantoea, Proteus, Pseudomonas, Stenotrophomonas | |
mph(E) | mph, mph1, mph2 | 885 | DQ839391 | 12873… 13757 | Acinetobacter, Citrobacter, Escherichia, Klebsiella, Mannheimia, Pasteurella, Serratia | |
mph(F) | mph(B), mph(E) | 900 | AM206957 | 4187… 5086 | Unknown | |
rRNA methylase | cfr$ | − | 1050 | AM408573 | 10028… 11077 | Bacillus, Enterococcus, Escherichia, Jeotgalicoccus, Macrococcus, Proteus, Staphylococcus |
erm(A) | erm(TR) | 732 | X03216 | 4551… 5282 | Aggregatibacter, Bacteriodes, Enterococcus, Helcococcus, Peptostreptococcus, Prevotella, Staphylococcus, Streptococcus | |
erm(B) | erm(2), erm(AM), erm(AMR), erm(BC), erm(BP), erm(Z), erm(BZ1, BZ2), erm(IP), erm(P), erm, erm(80) | 738 | M36722 | 714… 1451 | Aggregatibacter, Acinetobacter, Aerococcus, Arcanobacterium, Bacillus, Bacteriodes, Citrobacter, Corynebacterium, Clostridium, Enterobacter, Escherichia, Eubacterium, Enterococcus, Fusobacterium, Gemella, Haemophilus, Klebsiella, Lactobacillus, Micrococcus, Neisseria, Pantoeae, Pediococcus, Peptostreptococcus, Porphyromonas, Proteus, Pseudomonas, Ruminococcus, Rothia, Serratia, Staphylococcus, Streptococcus, Ureaplasma, Treponema, Wolinella | |
erm(C) | erm(IM), erm(M) | 735 | M19652 | 988… 1722 | Aggregatibacter, Actinomyces, Arcanobacterium, Bacillus, Bacteriodes, Clostridium, Corynebacterium, Escherichia, Eubacterium, Enterococcus, Haemophilus, Lactobacillus, Macrococcus, Micrococcus, Neisseria, Prevotella, Peptostreptococcus, Staphylococcus, Streptococcus, Wolinella | |
erm(D) | erm(J), erm(K) | 864 | M29832 | 430… 1293 | Bacillus, Salmonella | |
erm(E) | erm(E2) | 1146 | X51891 | 190… 1335 | Bacteroides, Eubacterium, Fusobacterium, Ruminococcus, Saccharopolyspora, Shigella, Streptomyces | |
erm(F) | erm(FS), erm(FU) | 801 | M14730 | 241… 1041 | Aggregatibacter, Actinomyces, Bacteroides, Capnocytophaga, Clostridium, Corynebacterium, Eubacterium, Enterococcus, Fusobacterium, Gardnerella, Haemophilus, Lactobacillus, Mobiluncus, Neisseria, Porphyromonas, Prevotella, Peptostreptococcus, Ruminococcus, Shigella, Selenomonas, Staphylococcus, Streptococcus, Treponema, Veillonella, Wolinella | |
erm(G) | − | 735 | M15332 | 672… 1406 | Bacillus, Bacteroides, Catenibacterium, Lactobacillus, Prevotella, Porphyromonas, Staphylococcus | |
erm(H) | car(B) | 900 | M16503 | 244… 1143 | Streptomyces | |
erm(I) | mdm(A) | − | − | − | Streptomyces | |
erm(N) | tlr(D) | 876 | X97721 | 160… 1035 | Streptomyces | |
erm(O) | lrm, srm(A) | 783 | M74717 | 40… 822 | Streptomyces | |
erm(Q) | − | 774 | L22689 | 262… 1035 | Aggregatibacter, Bacteroides, Clostridium, Staphylococcus, Streptococcus, Wolinella | |
erm(R) | − | 1023 | M11276 | 333… 1355 | Aeromicrobium, Arthrobacter | |
erm(S) | erm(SF), tlr(D) | 960 | M19269 | 460… 1419 | Streptomyces | |
erm(T) | erm(GT), erm(LF) | 735 | M64090 | 168… 902 | Enterococcus, Lactobacillus, Staphylococcus, Streptococcus | |
erm(U) | lrm(B) | 837 | X62867 | 361… 1197 | Streptomyces | |
erm(V) | erm(SV) | 780 | U59450 | 397… 1176 | Eubacterium, Fusobacterium, Streptomyces | |
erm(W) | myr(B) | 936 | D14532 | 1039… 1974 | Micromonospora | |
erm(X) | erm(CD), erm(Y) | 855 | M36726 | 296… 1150 | Arcanobacterium, Bifidobacterium, Corynebacterium, Propionibacterium | |
erm(Y) | erm(GM) | 735 | AB014481 | 556… 1290 | Staphylococcus | |
erm(Z) | srm(D) | 849 | AM709783 | 2817… 3665 | Streptomyces | |
erm(30) | pikR1 | 1011 | AF079138 | 1283… 2293 | Streptomyces | |
erm(31) | pikR2 | 969 | AF079138 | 154… 1122 | Streptomyces | |
erm(32) | tlr(B) | 843 | AJ009971 | 1790… 2632 | Streptomyces | |
erm(33) | − | 732 | AJ313523 | 163… 894 | Staphylococcus | |
erm(34) | − | 846 | AY234334 | 355… 1200 | Bacillus | |
erm(35) | − | 801 | AF319779 | 33… 833 | Bacteriodes | |
erm(36) | − | 846 | AF462611 | 186… 1031 | Micrococcus | |
erm(37) | erm(MT) | 540 | AE000516 | 2229013… 2229552 | Mycobacterium | |
erm(38) | − | 1161 | AY154657 | 63… 1223 | Mycobacterium | |
erm(39) | − | 741 | AY487229 | 2153… 2893 | Mycobacterium | |
erm(40) | − | 756 | AY570506 | 2035… 2790 | Mycobacterium | |
erm(41) | − | 522 | EU590124 | 258… 779 | Mycobacterium | |
erm(42) | erm(MI) | 906 | FR734406 | 1… 906 | Mannheimia, Pasteurella, Photobacterium |
Last update: January 6th 2012. Adapted from http://faculty.washington.edu/marilynr/
Partial sequence.
The multidrug resistance gene cfr confers resistance against phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A (see Table 3; Kehrenberg et al., 2007).
Esterase,
Lyase,
Transferase, and
Phosphorylase.
Table 5.
Gene | Length (nt) | Accession number | Coding region | Genera |
---|---|---|---|---|
qepA | 1536 | AB263754 | 7052… 8587 | Escherichia |
qepA2 | 1536 | EU847537 | 1672… 3207 | Escherichia |
qnrA1a | 657 | AY070235 | 303… 959 | Citrobacter, Escherichia, Klebsiella, Proteus |
qnrA2a | 657 | AY675584 | 1… 657 | Klebsiella, Shewanella |
qnrA3a | 657 | DQ058661 | 1… 657 | Shewanella |
qnrA4a | 657 | DQ058662 | 1… 657 | Shewanella |
qnrA5a | 657 | DQ058663 | 1… 657 | Shewanella |
qnrA6a | 657 | DQ151889 | 1… 657 | Proteus |
qnrA7a | 657 | GQ463707 | 1… 657 | Shewanella |
qnrB1a | 645 | DQ351241 | 37… 681 | Klebsiella |
qnrB2a | 645 | DQ351242 | 1… 645 | Citrobacter, Enterobacter, Klebsiella, Salmonella |
qnrB3a | 645 | DQ303920 | 37… 681 | Escherichia |
qnrB4a | 645 | DQ303921 | 4… 648 | Citrobacter, Enterobacter, Escherichia, Klebsiella |
qnrB5a | 645 | DQ303919 | 37… 681 | Salmonella |
qnrB6a | 645 | EF520349 | 37… 681 | Enterobacter, Panthoea |
qnrB7a | 645 | EU043311 | 1… 645 | Enterobacter, Klebsiella |
qnrB8a | 645 | EU043312 | 1… 645 | Citrobacter |
qnrB9a | 645 | EF526508 | 1… 645 | Citrobacter |
qnrB10a | 645 | DQ631414 | 37… 681 | Citrobacter, Enterobacter, Klebsiella |
qnrB11a | 645 | EF653270 | 4… 648 | Citrobacter |
qnrB12a | 645 | AM774474 | 2435… 3079 | Citrobacter |
qnrB13a | 645 | EU273756 | 37… 681 | Citrobacter |
qnrB14a | 645 | EU273757 | 37… 681 | Citrobacter |
qnrB15a | 645 | EU302865 | 37… 681 | Citrobacter |
qnrB16a | 645 | EU136183 | 37… 681 | Citrobacter |
qnrB17a | 645 | AM919398 | 37… 681 | Citrobacter |
qnrB18a | 645 | AM919399 | 37… 681 | Citrobacter |
qnrB19a | 645 | EU432277 | 1… 645 | Escherichia, Klebsiella, Salmonella |
qnrB20a | 645 | AB379831 | 37… 681 | Escherichia |
qnrB21a | 645 | FJ611948 | 1… 645 | Escherichia |
qnrB22a | 645 | FJ981621 | 37… 681 | Citrobacter |
qnrB23a | 645 | FJ981622 | 37… 681 | Citrobacter |
qnrB24a | 645 | HM192542 | 37… 681 | Citrobacter |
qnrB25a | 645 | HQ172108 | 1… 645 | Citrobacter |
qnrB26a | 645 | HM439644 | 1… 645 | Citrobacter |
qnrB27a | 645 | HM439641 | 1… 645 | Citrobacter |
qnrB28a | 645 | HM439643 | 1… 645 | Citrobacter |
qnrB29a | 645 | HM439649 | 37… 681 | Citrobacter |
qnrB30a | 645 | HM439650 | 37… 681 | Citrobacter |
qnrB31a | 645 | HQ418999 | 1… 645 | Klebsiella |
qnrB32a | 645 | JN173054 | 37… 681 | Citrobacter |
qnrB33a | 645 | JN173055 | 36… 680 | Citrobacter |
qnrB34a | 645 | JN173056 | 39… 683 | Citrobacter |
qnrB35a | 645 | JN173057 | 2307… 2951 | Citrobacter |
qnrB36a | 645 | JN173058 | 37… 681 | Citrobacter |
qnrB37a | 645 | JN173059 | 36… 680 | Citrobacter |
qnrB38a | 645 | JN173060 | 2307… 2951 | Citrobacter |
qnrB39a | − | NZ_ABWL02000005 | − | − |
qnrB40a | 645 | JN166689 | 16… 660 | Citrobacter |
qnrB41a | 645 | JN166690 | 37… 681 | Citrobacter |
qnrB42a | 645 | JN680743 | 1… 645 | Klebsiella |
qnrB43a | 644 | JQ349152 | 37… 680 | Escherichia |
qnrB44a | 644 | JQ349153 | 37… 680 | Escherichia |
qnrB45a | 644 | JQ349152 | 37… 680 | Escherichia |
qnrB46a | 644 | JQ349154 | 37… 680 | Escherichia |
qnrB47a | 644 | JQ349155 | 37… 680 | Escherichia |
qnrB48a | 645 | JQ762640 | 37… 681 | Citrobacter |
qnrB49a | 645 | JQ582718 | 37… 681 | Citrobacter |
qnrB50–qnrB51 not public yet | ||||
qnrB52a | 645 | EF488762 | 1… 645 | Proteus |
qnrB53a | 645 | HQ704413 | 37… 681 | Klebsiella |
qnrB54–qnrB59 not public yet | ||||
qnrCa | 666 | EU917444 | 1717… 2382 | Proteus |
qnrDa | 645 | EU692908 | 1… 645 | Escherichia, Morganella, Proteus, Providencia, Salmonella |
qnrS1a | 657 | AB187515 | 9737… 10393 | Enterobacter, Escherichia, Klebsiella, Proteus, Salmonella, Shigella |
qnrS2a | 657 | DQ485530 | 1… 657 | Aeromonas, Salmonella |
qnrS3a | >656 | EU077611 | <1… 656 | Escherichia |
qnrS4a | 657 | FJ418153 | 1… 657 | Salmonella |
qnrS5a | 657 | HQ631377 | 1… 657 | Aeromonas |
qnrS6a | 657 | HQ631376 | 1… 657 | Aeromonas |
qnrS7–qnrS8 not public yet |
Last update: July 8th 2012. According to http://www.lahey.org/qnrStudies
and nucleotide BLAST searches.
Table 6.
Mechanism | Gene | Length (nt) | Accession number | Coding region | Genera |
---|---|---|---|---|---|
Efflux | otr(B) | 1692 | AF079900 | 40… 1731 | Mycobacterium, Streptomyces |
otr(C) | 1056 | AY509111 | 324… 1379 | Streptomyces | |
tcr | 1539 | D38215 | 516… 2054 | Streptomyces | |
tet(A) | 1200 | X00006 | 1328… 2527 | Acinetobacter, Aeromonas, Alcaligenes, Bordetella, Chryseobacterium, Citrobacter, Edwardsiella, Enterobacter, Escherichia, Flavobacterium, Klebsiella, Laribacter, Plesiomonas, Proteus, Pseudomonas, Salmonella, Serratia, Shigella, Variovorax, Veillonella, Vibrio | |
tetA(P) | 1263 | L20800 | 1063… 2325 | Clostridium | |
tet(B) | 1206 | J01830 | 1608… 2813 | Acinetobacter, Actinobacillus, Aeromonas, Aggregatibacter, Brevundimonas, Citrobacter, Enterobacter, Erwinia, Escherichia, Haemophilus, Klebsiella, Mannheimia, Moraxella, Neisseria, Pantoea, Pasteurella, Photobacterium, Plesiomonas, Proteus, Providencia, Pseudomonas, Roseobacter, Salmonella, Serratia, Shigella, Treponema, Vibrio, Yersinia | |
tet(C) | 1191 | X01654 | 86… 1276 | Aeromonas, Bordetella, Chlamydia, Citrobacter, Enterobacter, Escherichia, Francisella, Halomonas, Klebsiella, Proteus, Pseudomonas, Roseobacter, Salmonella, Serratia, Shigella, Vibrio | |
tet(D) | 1185 | X65876 | 1521… 2705 | Aeromonas, Alteromoas, Citrobacter, Edwardsiella, Enterobacter, Escherichia, Halomonas, Klebsiella, Morganella, Pasteurella, Photobacterium, Proteus, Salmonella, Shewanella, Shigella, Vibrio, Yersinia | |
tet(E) | 1218 | L06940 | 21… 1238 | Aeromonas, Alcaligenes, Escherichia, Flavobacterium, Plesiomonas, Proteus, Providencia, Pseudomonas, Roseobacter, Serratia, Vibrio | |
tet(G) | 1128 | AF071555 | 6644… 7771 | Acinetobacter, Brevundimonsa, Escherichia, Fusobacterium, Mannheimia, Ochrobactrum, Pasteurella, Proteus, Providencia, Pseudomonas, Roseobacter, Salmonella, Shewanella, Vibrio | |
tet(H) | 1203 | U00792 | 716… 1918 | Acinetobacter, Actinobacillus, Histophilus, Mannheimia, Moraxella, Pasteurella, Psychrobacter | |
tet(J) | 1197 | AF038993 | 1084… 2280 | Escherichia, Morganella, Proteus | |
tet(K) | 1380 | M16217 | 305… 1684 | Bacillus, Clostridium, Enterococcus, Eubacterium, Haemophilus, Lactobacillus, Listeria, Mycobacterium, Nocardia, Peptostreptococcus, Staphylococcus, Streptococcus, Streptomyces | |
tet(L) | 1377 | D00006 | 189… 1565 | Acinetobacter, Actinobacillus, Actinomyces, Bacillus, Bifidobacterium, Citrobacter, Clostridium, Enterobacter, Enterococcus, Escherichia, Flavobacterium, Fusobacterium, Geobacillus, Kurthia, Lactobacillus, Listeria, Mannheimia, Morganella, Mycobacterium, Nocardia, Ochrobactrum, Oceanobacillus, Paenibacillus, Pasteurella, Pediococcus, Peptostreptococcus, Proteus, Pseudomonas, Rahnella, Salmonella, Sporosarcina, Staphylococcus, Streptococcus, Streptomyces, Variovorax, Veillonella, Virgibacillus | |
tet(V) | 1260 | AF030344 | 462… 1721 | Mycobacterium | |
tet(Y) | 1176 | AF070999 | 1680… 2855 | Aeromonas, Escherichia, Photobacterium | |
tet(Z) | 1155 | AF121000 | 11880… 13034 | Corynebacterium, Lactobacillus | |
tet(30) | 1185 | AF090987 | 1130… 2314 | Agrobacterium | |
tet(31) | 1233 | AJ250203 | 1651… 2883 | Aeromonas, Gallibacterium | |
tet(33) | 1224 | AJ420072 | 22940… 24163 | Arthrobacter, Corynebacterium | |
tet(35) | 1110 | AF353562 | 2213… 3322 | Stenotrophomonas, Vibrio | |
tet(38) | 1353 | AY825285 | 1… 1353 | Staphylococcus | |
tet(39) | 1188 | AY743590 | 749… 1936 | Acinetobacter, Alcaligenes, Brevundimonas, Enterobacter, Providencia, Stenotrophomonas | |
tet(40) | 1221 | AM419751 | 14211… 15431 | Clostridium | |
tet(41) | 1182 | AY264780 | 1825… 3006 | Serratia | |
tet(42) | 1287 | EU523697 | 687… 1973 | Bacillus, Microbacterium, Micrococcus, Paenibacillus, Pseudomonas, Staphylococcus | |
tet(43) | 1560 | GQ244501 | 60… 1619 | Uncultured | |
Enzymatic | tet(X) | 1167 | M37699 | 586… 1752 | Bacteroides, Pseudomonas, Sphingobacterium |
tet(34) | 465 | AB061440 | 306… 770 | Aeromonas, Pseudomonas, Serratia | |
tet(37) | 327 | AF540889 | 1… 327 | Uncultured | |
Ribosomal protection | otr(A) | 1992 | X53401 | 349… 2340 | Bacillus, Mycobacterium, Streptomyces |
tetB(P) | 1959 | L20800 | 2309… 4267 | Clostridium | |
tet(M) | 1920 | U08812 | 1981… 3900 | Abiotrophia, Acinetobacter, Actinomyces, Aerococcus, Aeromonas, Afipia, Arthrobacter, Bacillus, Bacterionema, Bacteroides, Bifidobacterium, Brachybacterium, Catenibacterium, Clostridium, Corynebacterium, Edwardsiella, Eikenella, Enterobacter, Enterococcus, Erysipelothrix, Escherichia, Eubacterium, Flavobacterium, Fusobacterium, Gardnerella, Gemella, Granulicatella, Haemophilus, Kingella, Klebsiella, Kurthia, Lactobacillus, Lactococcus, Listeria, Microbacterium, Mycoplasma, Neisseria, Paenibacillus, Pantoea, Pasteurella, Peptostreptococcus, Photobacterium, Prevotella, Pseudoalteromonas, Pseudomonas, Ralstonia, Selenomonas, Serratia, Shewanella, Staphylococcus, Streptococcus, Streptomyces, Ureaplasma, Veillonella, Vibrio | |
tet(O) | 1920 | M18896 | 207… 2126 | Actinobacillus, Aerococcus, Anaerovibrio, Bifidobacterium, Butyrivibrio, Campylobacter, Clostridium, Enterococcus, Eubacterium, Fusobacterium, Gemella, Lactobacillus, Megasphaera, Mobiluncus, Neisseria, Peptostreptococcus, Psychrobacter, Staphylococcus, Streptococcus | |
tet(Q) | 1926 | Z21523 | 362… 2287 | Anaerovibrio, Bacteroides, Capnocytophaga, Clostridium, Eubacterium, Fusobacterium, Gardnerella, Lactobacillus, Mitsuokella, Mobiluncus, Neisseria, Peptostreptococcus, Porphyromonas, Prevotella, Ruminococcus, Selenomonas, Streptococcus, Subdolgranulum, Veillonella | |
tet(S) | 1926 | L09756 | 447… 2372 | Enterococcus, Lactobacillus, Lactococcus, Listeria, Staphylococcus, Streptococcus, Veillonella | |
tet(T) | 1956 | L42544 | 478… 2433 | Lactobacillus, Streptococcus | |
tet(W) | 1920 | AJ222769 | 3687… 5606 | Acidaminococcus, Actinomyces, Arcanobacterium, Bacillus, Bacteroides, Bifidobacterium, Butyrivibrio, Clostridium, Fusobacterium, Lactobacillus, Megasphaera, Mitsuokella, Neisseria, Porphyromonas, Prevotella, Roseburia, Selenomonas, Staphylococcus, Streptococcus, Streptomyces, Subdolgranulum, Veillonella | |
tet(32) | 1920 | DQ647324 | 181… 2100 | Eubacterium, Streptococcus | |
tet(36) | 1923 | AJ514254 | 2534… 4456 | Bacteroides, Clostridium, Lactobacillus | |
tet(44) | 1923 | FN594949 | 25245… 27167 | Campylobacter, Clostricium | |
tet | 1920 | M74049 | 343… 2261 | Streptomyces | |
Unknown | tet(U) | 318 | U01917 | 413… 730 | Enterococcus, Staphylococcus, Streptococcus |
Last update: January 6th 2012. Adapted from http://faculty.washington.edu/marilynr/. The efflux genes tet(45) and tet(46) have been named but not yet published.
Table 7.
Gene | Sub-family | Gene(s) included | Length (nt) | Accession number | Coding region | Genera |
---|---|---|---|---|---|---|
dfrA1 | dfrA1-group | dhfrIb, dfr1, dhfrI | 474 | X00926 | 236… 709 | Actinobacter, Enterobacter, Escherichia, Klebsiella, Laribacter, Morganella, Pasteurella, Proteus, Pseudomonas, Salmonella, Serratia, Shigella, Vibrio |
dfrA3 | − | − | 489 | J03306 | 103… 591 | Salmonella |
dfrA5 | dfrA1-group | dhfrV, dfrV | 474 | X12868 | 1306… 1779 | Actinobacter, Aeromonas, Comomonas, Enterobacter, Escherichia, Klebsiella, Pseudomonas, Salmonella, Vibrio |
dfrA6 | dfrA1-group | dfrVI | 474 | Z86002 | 336… 809 | Proteus |
dfrA7 | dfrA1-group | dhfrVII, dfrVII, dfrA17 | 474 | X58425 | 594… 1067 | Actinobacter, Escherichia, Proteus, Salmonella, Shigella |
dfrA8 | − | − | 510 | U10186 | 711… 1220 | Escherichia |
dfrA9 | − | − | 534 | X57730 | 726… 1259 | Escherichia |
dfrA10 | − | − | 564 | L06418 | 5494… 6057 | Actinobacter, Escherichia, Klebsiella, Salmonella |
dfrA12 | dfrA12-group | dhfrXII, dfr12 | 498 | Z21672 | 310… 807 | Actinobacter, Aeromonas, Citrobacter, Edwardsiella, Enterobacter, Escherichia, Klebsiella, Proteus, Providencia, Pseudomonas, Serratia, Salmonella, Staphylococcus, Stenotrophomonas |
dfrA13 | dfrA12-group | − | 498 | Z50802 | 718… 1215 | Escherichia |
dfrA14 | dfrA1-group | dhfrIb | 474 | Z50805 | 72… 545 | Achromobacter, Aeromonas, Escherichia, Klebsiella, Salmonella, Vibrio |
dfrA15 | dfrA1-group | dhfrXVb | 474 | Z83311 | 357… 830 | Actinobacter, Enterobacter, Escherichia, Klebsiella, Morganella, Proteus, Pseudomonas, Vibrio |
dfrA16 | dfrA1-group | dhfrXVI, dfr16 | 474 | AF174129 | 1352… 1825 | Aeromonas, Escherichia, Klebsiella, Salmonella |
dfrA17 | dfrA1-group | dhfrXVII, dfr17 | 474 | AB126604 | 98… 571 | Actinobacter, Enterobacter, Escherichia, Klebsiella, Kluyvera, Laribacter, Pseudomonas, Salmonella, Serratia, Shigella, Staphylococcus, Stenotrophomonas |
dfrA18 | − | dfrA19 | 570 | AJ310778 | 7004… 7573 | Enterobacter, Klebsiella, Salmonella |
dfrA20 | − | − | 510 | AJ605332 | 1304… 1813 | Pasteurella |
dfrA21 | dfrA12-group | dfrxiii | 498 | AY552589 | 1… 498 | Escherichia, Klebsiella, Salmonella |
dfrA22 | dfrA12-group | dfr22, dfr23 | 498 | AJ628423 | 325… 822 | Escherichia, Klebsiella, Serratia |
dfrA23 | − | − | 561 | AJ746361 | 6743… 7303 | Salmonella |
dfrA24 | − | − | 558 | AJ972619 | 83… 640 | Escherichia |
dfrA25 | dfrA1-group | − | 459 | DQ267940 | 54… 512 | Citrobacter, Klebsiella, Salmonella, Serratia |
dfrA26 | − | – | 552 | AM403715 | 303… 854 | Escherichia |
dfrA27 | dfrA1-group | dfr | 474 | EU675686 | 2543… 3016 | Aeromonas, Escherichia, Klebsiella, Serratia, Vibrio |
dfrA28 | dfrA1-group | − | 474 | FM877476 | 116… 589 | Aeromonas |
dfrA29 | − | dfrVII, dfrA7 | 472 | AM237806 | 615… 1086 | Salmonella |
dfrA30 | − | dhfrV | 474 | AM997279 | 705… 1178 | Klebsiella |
dfrA31 | − | dfr6 | 474 | AB200915 | 1832… 2305 | Escherichia, Vibrio |
dfrA32 | dfrA1-group | − | 474 | GU067642 | 535… 1008 | Laribacter, Salmonella |
dfrA33 | dfrA12-group | − | 498 | FM957884 | 88… 585 | Unknown |
dfrB1 | − | dhfrIIa, dfr2a | 237 | U36276 | 717… 953 | Aeromonas, Bordetella, Escherichia, Klebsiella, Pseudomonas |
dfrB2 | − | dhfrIIb, dfr2b | 237 | J01773 | 809… 1045 | Escherichia |
dfrB3 | − | dhfrIIc, dfr2c | 237 | X72585 | 5957… 6193 | Aeromonas, Enterobacter, Escherichia, Klebsiella |
dfrB4 | − | dfr2d | 237 | AJ429132 | 69… 305 | Aeromonas, Escherichia, Klebsiella |
dfrB5 | − | dfr2e | 237 | AY943084 | 2856… 3092 | Pseudomonas |
dfrB6 | − | − | 237 | DQ274503 | 394… 630 | Salmonella |
dfrB7 | − | − | 237 | DQ993182 | 244… 480 | Aeromonas |
dfrB8 | − | − | 249 | GU295656 | 1048… 1296 | Aeromonas |
dfrD | − | − | 489 | Z50141 | 94… 582 | Listeria, Staphylococcus |
dfrG | − | − | 498 | AB205645 | 1013… 1510 | Enterococcus, Staphylococcus |
dfrK | − | 492 | FM207105 | 2788… 3279 | Enterococcus, Staphylococcus |
Table 2.
Amber class A β-lactamases and ESBLs | Number of variants* | Amber class B β-lactamases and MBLs | Number of variants* | Amber class C β-lactamases and ESBLs | Number of variants* | Amber class D β-lactamases and ESBLs | Number of variants* |
---|---|---|---|---|---|---|---|
blaACI | 1 | blaB | 13 | blaACCa | 5 | ampH | 1 |
blaAER | 1 | blaCGB | 2 | blaACTa | 14 | ampS | 1 |
blaAST | 1 | blaDIM | 1 | blaADC | 54 | blaLCR | 1 |
blaBEL | 3 | blaEBR | 1 | blaBIL | 1 | blaNPS | 1 |
blaBES | 1 | blaGIM | 1 | blaBUT | 2 | blaOXAa | 247 |
blaBIC | 1 | blaGOB | 18 | blaCFEa | 1 | loxA | 1 |
blaBPS | 5 | blaIMPa | 37 | blaCMG | 1 | ||
blaCARB | 14 | blaINDa | 7 | blaCMYa | 92 | ||
blaCIA | 1 | blaJOHN | 1 | blaDHAa | 8 | ||
blaCGA | 1 | blaMUS | 1 | blaFOXa | 10 | ||
blaCKO | 5 | blaNDM | 6 | blaLATa | 1 | ||
blaCME | 2 | blaSIM | 1 | blaLENc | 26 | ||
blaCTX-Ma | 130 | blaSPM | 1 | blaMIRa | 5 | ||
blaDES | 1 | blaTUS | 1 | blaMOR | 1 | ||
blaERP | 1 | blaVIMa | 34 | blaMOXa | 8 | ||
blaFAR | 1 | cepA | 7 | blaOCH | 7 | ||
blaFONA | 6 | cfiA | 16 | blaOKP-Ac | 16 | ||
blaGESa,b | 22 | cphA | 8 | blaOKP-Bc | 20 | ||
blaHERA | 8 | imiH | 1 | blaOXYc | 23 | ||
blaIMI | 3 | imiS | 1 | blaTRU | 1 | ||
blaKLUAd | 12 | blaZEG | 1 | ||||
blaKLUCd | 2 | cepH | 1 | ||||
blaKLUG | 1 | ||||||
blaKLUY | 4 | ||||||
blaKPCa | 12 | ||||||
blaLUT | 6 | ||||||
blaMAL | 2 | ||||||
blaMOR | 1 | ||||||
blaNMC-A | 1 | ||||||
blaPERa | 7 | ||||||
blaPME | 1 | ||||||
blaPSE | 4 | ||||||
blaRAHN | 2 | ||||||
blaROB | 1 | ||||||
blaSED | 1 | ||||||
blaSFC | 1 | ||||||
blaSFO | 1 | ||||||
blaSHVa | 166 | ||||||
blaSMEa | 3 | ||||||
blaTEMa | 201 | ||||||
blaTLA | 1 | ||||||
blaTOHO | 1 | ||||||
blaVEBa | 7 | ||||||
blaZ | 1 | ||||||
cdiA | 1 | ||||||
cfxA | 6 | ||||||
cumA | 1 | ||||||
hugA | 1 | ||||||
penA | 1 |
Last update: June 8th 2012.
According to http://www.lahey.org/Studies.
GES and IBC-type ESBLs have all been renamed as blaGES according to Weldhagen et al. (2006).
To the subsection dealing with the “Resistance mechanisms” of the AMINOGLYCOSIDES we would like to add that to date six additional methylases have been reported, i.e., npmA, rmtA, rmtB, rmtC, rmtD, and rmtE (Courvalin, 2008; Doi et al., 2008; Davis et al., 2010). Futhermore, that within the three major classes (AAC, ANT, and APH) an additional subdivision can be made based on the enzymes' target sites within the aminoglycoside molecules: i.e., there are four acetyltransferases: AAC(1), AAC(2′), AAC(3), and AAC(6′); five nucleotidyltransferases: ANT(2″), ANT(3″), ANT(4′), ANT(6), and ANT(9); and seven phosphotransferases: APH(2″), APH(3′), APH(3″), APH(4), APH(6), APH(7″), and APH(9).
To the subsection β-LACTAM, Resistance, mechanisms we would like to add that in recent years acquired genes encoding ESBLs have become a major concern (Bradford, 2001). Over time, the genes for the parent enzymes blaTEM−1, blaTEM−2, and blaSHV−1 have undergone point mutations which resulted in amino acid substitutions that changed the substrate spectrum to that of ESBLs, starting with blaTEM−3 and blaSHV−2 (Bradford, 2001).
Because chloramphenicol is not an actual antibiotic class the subsection of CHLORAMPHENICOL should be called PHENICOLS. Concerning the history of PHENICOLS, it is worthwhile to know the first antibiotic, chloramphenicol, originally referred to as chloromycetin, was isolated already in 1947 from Streptomyces venezuelae (Ehrlich et al., 1947).
Besides the inactivating enzymes (chloramphenicol acetyltransferases), there are also reports on other phenicol resistance systems, such as the inactivation by phosphotransferases, mutations of the target site, permeability barriers, and efflux systems (Schwarz et al., 2004). Of the latter mechanism, cmlA and floR are the most commonly known genes in Gram-negative bacteria (Bissonnette et al., 1991; Briggs and Fratamico, 1999).
The macrolides (subsection MACROLIDES–LINCOSAMIDES–STREPTOGRAMIN B) have a similar mode of antibacterial action, comparable antibacterial spectra and in part overlapping binding sites at the ribosome as two other antibiotic classes, i.e., lincosamides and streptogramin antibiotics (comprising streptogramin A and B compounds that act synergistically). Consequently, these antibiotics, although chemically distinct, have been clustered together as MLS antibiotics (Roberts, 1996). Macrolides, lincosamides and streptogramins all inhibit protein synthesis by binding to the 50S ribosomal subunit of bacteria (Weisblum, 1995; Roberts, 2002).
To Resistance mechanisms of the subsection MACROLIDES–LINCOSAMIDES–STREPTOGRAMIN B. Shortly after the introduction of erythromycin into clinical setting in the 1950s, bacterial resistance to this antibiotic was reported for the first time in staphylococci (Weisblum, 1995). Since then a large number of bacteria have been identified that are resistant to MLS due to the presence of various different genes. The resistance determinants responsible include rRNA methylases that modify the ribosomal target sites, ABC transporters, and efflux proteins of the Major Facilitator Superfamily, as well as genes for inactivating enzymes (Roberts et al., 1999; Roberts, 2008). The latter group can be further subdivided into esterases, lyases, phosphorylases, and transferases (Table 4).
The most common mechanism of MLSB resistance is due to the presence of rRNA methylases, encoded by the erm genes. These enzymes methylate the adenine residue(s) resulting in MLSB resistance. The methylated adenine(s) prevents the drugs from binding to the 50S ribosomal subunit. The other two mechanisms efflux and enzymatic inactivation result in resistance to only 1 or 2 classes of antibiotics belonging to the MLS group.
There are currently 77 MLS resistance genes recognized. A new MLS gene must have <79% amino acid identity with all previously characterized MLS genes before receiving a unique name (Roberts et al., 1999; Roberts, 2008). For an actual list of the MLS acquired resistance genes we refer to the website of Dr. Marilyn Roberts, http://faculty.washington.edu/marilynr/.
In addition to the subsection of QUINOLONES currently five families of qnr genes have been reported; qnrA (7 subtypes), qnrB (59 subtypes), qnrC (1 subtype), qnrD (1 subtype), and qnrS (8 subtypes) (Jacoby et al., 2008; Cattoir and Nordmann, 2009; Cavaco et al., 2009; Strahilevitz et al., 2009; Torpdahl et al., 2009).
Another mechanism of conferring resistance to quinolones is represented by the plasmid-borne gene qepA, which codes for an efflux pump that can export hydrophilic fluoroquinolones, e.g., ciprofloxacin and enrofloxacin (Périchon et al., 2007; Yamane et al., 2007). A variant of this resistance pump, QepA2, was identified in an E. coli isolate from France (Cattoir et al., 2008).
Regarding TETRACYCLINE, Resistance mechanisms, currently there are 45 different acquired tetracycline resistance determinants recognized (Roberts, 1996, 2005; Brown et al., 2008) (Table 6). For an up-to-date list of the acquired tetracycline resistance genes, we refer to the website of Dr. Marilyn Roberts, http://faculty.washington.edu/marilynr/. Among these, 26 of the tet genes, 2 of the otr genes and the only tcr determinant code for efflux pumps, whereas 11 tet genes and 1 otr gene code for ribosomal protection proteins (RPPs). The enzymatic inactivation mechanism can be attributed to 3 tet genes. The tet(U) determinant represents an unknown tetracycline resistance mechanism since its sequence does not appear to be related to either efflux or RPPs, nor to the inactivation enzymes. The efflux and RPP encoding genes are found in members of Gram-positive, Gram-negative, aerobic, as well as anaerobic bacteria. In contrast, the enzymatic tetracycline inactivation mechanism has so far only been identified in Gram-negative bacteria. The tet(M) has the broadest host range of all tetracycline resistance genes, whereas tet(B) gene has the widest range among the Gram-negative bacteria. In recent years published data indicate that there are increasing numbers of Gram-negative bacteria that carry tet genes originally identified in Gram-positive bacteria (Roberts, 2002).
To the subsection TRIMETHOPRIM, Resistance mechanisms. Initially, the acquired DHFRs fell into two distinct families A and B, encoded by the dfrA and dfrB genes (Howell, 2005). Up to now 6 plasmid-mediated families can be distinguished with relatively few dfr determinants originating from Gram-positive bacteria (Table 7). The dfrK and dfrA28 genes are the newest additions to the trimethoprim resistance determinant family (Kadlec and Schwarz, 2009; Kadlec et al., 2011). In contrast to the latest reported DHFRs, the oldest families, dfrA and dfrB, each contain several members (Roberts, 2002; Levings et al., 2006). For example, the dfrA group accomodates over 30 published genes; however, unpublished, dfrA variants are also present in the public DNA libraries and some genes apparently have changed nomenclature (Table 7).
Furthermore, we suggest an additional section concerning oxazolidinones.
Oxazolidinones
History and action mechanism
Linezolid is to date the only FDA-approved oxazolidinone (Shaw and Barbachyn, 2011). It was approved in 2000 for the treatment of serious infections caused by Gram-positive bacteria resistant to other antibiotics, such as vancomycin-resistant enterococci (VRE) and methicillin-resistant Staphylococcus aureus (MRSA) (Long and Vester, 2012). As such linezolid is considered one of the last resort antimicrobial agents in human medicine. It has not been approved for use in veterinary medicine. Oxazolidinones bind at the P site of the ribosome and inhibit the formation of the initiation complex, which consists of mRNA, f-Met tRNA, and the 50S ribosomal subunit (Shaw and Barbachyn, 2011; Long and Vester, 2012).
Resistance mechanism
Various mutations located in the peptidyl transferase loop of domain V of 23S rRNA as well as mutations in the genes for the ribosomal proteins L3 and L4, all associated with resistance to oxazolidinones, have been identified (reviewed by Long and Vester, 2012). A single gene, cfr, has been identified to confer transferable resistance to oxazolidinones. This gene codes for a methyltransferase that targets A2503 in 23S rRNA (Kehrenberg et al., 2005). Besides oxazolidinone resistance, it also confers resistance to phenicols, lincosamides, pleuromutilins, and streptogramin A antibiotics. Although initially identified in coagulase-negative staphylococci of animal origin, the gene cfr has now been detected in a wide variety of staphylococci of human and animal origin, including a Panton-Valentin leukocidin-positive MRSA USA300 (Shore et al., 2010) and livestock-associated MRSA ST398 (Kehrenberg et al., 2009). More recently, the cfr gene has also been identified in Bacillus spp. (Dai et al., 2010) and Enterococcus faecalis (Liu et al., 2012), but also in Gram-negative bacteria, such as Proteus vulgaris (Wang et al., 2011) and Escherichia. coli (Wang et al., 2012). Plasmids and insertion sequences seem to play an important role in the spread of this gene across species and genus boundaries.
References
- Bissonnette L., Champetier S., Buisson J.-P., Roy P. H. (1991). Characterization of the non-enzymatic chloramphenicol resistance (cmlA) gene of the In4 integron of Tn1696: similarity of the product to transmembrane transport proteins. J. Bacteriol. 173, 4493–4502 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford P. A. (2001). Extended-spectrum β-lactamase in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14, 933–951 10.1128/CMR.14.4.933-951.2001 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briggs C. E., Fratamico P. M. (1999). Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimurium DT104. Antimicrob. Agents Chemother. 43, 846–849 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown M. G., Mitchell E. H., Balkwill D. L. (2008). Tet 42, a novel tetracycline resistance determinant isolated from deep terrestrial subsurface bacteria. Antimicrob. Agents Chemother. 52, 4518–4521 10.1128/AAC.00640-08 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cattoir V., Nordmann P. (2009). Plasmid-mediated quinolone resistance in gram-negative bacterial species: an update. Curr. Med. Chem. 16, 1028–1046 [DOI] [PubMed] [Google Scholar]
- Cattoir V., Poirel L., Nordmann P. (2008). Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France. Antimicrob. Agents Chemother. 52, 3801–3804 10.1128/AAC.00638-08 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavaco L. M., Hasman H., Xia S., Aarestrup F. M. (2009). qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrob. Agents Chemother. 53, 603–608 10.1128/AAC.00997-08 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Courvalin P. (2008). New plasmid-mediated resistances to antimicrobial agents. Arch. Microbiol. 189, 289–291 10.1007/s00203-007-0331-9 [DOI] [PubMed] [Google Scholar]
- Dai L., Wu C. M., Wang M. G., Wang Y., Wang Y., Huang S. Y., et al. (2010). First report of the multidrug resistance gene cfr and the phenicol resistance gene fexA in a Bacillus strain from swine feces. Antimicrob. Agents Chemother. 54, 3953–3955 10.1128/AAC.00169-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis M. A., Baker K. N. K., Orfe L. H., Shah D. H., Besser T. E., Call D. E. (2010). Discovery of a gene conferring multiple-aminoglycoside resistance in Escherichia coli. Antimicrob. Agents Chemother. 54, 2666–2669 10.1128/AAC.01743-09 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doi Y., Wachino J.-I., Arakawa Y. (2008). Nomenclature of plasmid-mediated 16S rRNA methylases responsible for panaminoglycoside resistance. Antimicrob. Agents Chemother. 52, 2287–2288 10.1128/AAC.00022-08 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehrlich J., Bartz Q. R., Smith R. M., Joslyn D. A., Burkholder P. R. (1947). Chloromycetin a new antibiotic from a soil actinomycete. Science 106, 417 10.1126/science.106.2757.417 [DOI] [PubMed] [Google Scholar]
- Elbourne L. D. H., Hall R. M. (2006). Gene cassette encoding a 3-N-aminoglycoside acetyltransferase in a chromosomal integron. Antimicrob. Agents Chemother. 50, 2270–2271 10.1128/AAC.01450-05 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grape M. (2006). Molecular Basis for Trimethoprim and Sulphonamide Resistance in Gram Negative Pathogens. Ph.D. Thesis, Stockholm, Sweden: Karolinska Institutet [Google Scholar]
- Howell E. E. (2005). Searching sequence space: two different approaches to dihydrofolate reductase catalysis. ChemBioChem 6, 590–600 10.1002/cbic.200400237 [DOI] [PubMed] [Google Scholar]
- Jacoby G., Cattoir V., Hooper D., Martínez-Martínez L., Nordmann P., Pascual A., et al. (2008). qnr gene nomenclature. Antimicrob. Agents Chemother. 52, 2297–2299 10.1128/AAC.00147-08 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kadlec K., Schwarz S. (2009). Identification of a novel trimethoprim resistance gene, dfrK, in a methicillin-resistant Staphylococcus aureus ST398 strain and its physical linkage to the tetracycline resistance gene tet(L). Antimicrob. Agents Chemother. 53, 776–778 10.1128/AAC.01128-08 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kadlec K., von Czapiewski E., Kaspar H., Wallmann J., Michael G. B., Steinacker U., et al. (2011). Molecular basis of sulfonamide and trimethoprim resistance in fish-pathogenic Aeromonas isolates. Appl. Environ. Microbiol. 77, 7147–7150 10.1128/AEM.00560-11 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kehrenberg C., Aarestrup F. M., Schwarz S. (2007). IS21-558 Insertion sequences are involved in the mobility of the multiresistance gene cfr. Antimicrob. Agents Chemother. 51, 483–487 10.1128/AAC.01340-06 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kehrenberg C., Cuny C., Strommenger B., Schwarz S., Witte W. (2009). Methicillin-resistant and -susceptible Staphylococcus aureus strains of clonal lineages ST398 and ST9 from swine carry the multidrug resistance gene cfr. Antimicrob. Agents Chemother. 53, 779–781 10.1128/AAC.01376-08 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kehrenberg C., Schwarz S., Jacobsen L., Hansen L. H., Vester B. (2005). A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol. Microbiol. 57, 1064–1073 10.1111/j.1365-2958.2005.04754.x [DOI] [PubMed] [Google Scholar]
- Levings R. S., Lightfoot D., Elbourne L. D. H., Djordjevic S. P., Hall R. M. (2006). New integron-associated gene cassette encoding a trimethoprim-resistant DfrB-type dihydrofolate reductase. Antimicrob. Agents Chemother. 50, 2863–2865 10.1128/AAC.00449-06 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Long K. S., Vester B. (2012). Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob. Agents Chemother. 56, 603–612 10.1128/AAC.05702-11 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y., Wang Y., Wu C., Shen Z., Schwarz S., Du X. D., et al. (2012). First report of the multidrug resistance gene cfr in Enterococcus faecalis of animal origin. Antimicrob. Agents Chemother. 56, 1650–1654 10.1128/AAC.06091-11 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magnet S., Blanchard J. S. (2005). Molecular insights into aminoglycoside action and resistance. Chem. Rev. 105, 477–497 10.1021/cr0301088 [DOI] [PubMed] [Google Scholar]
- Olson A. B., Silverman M., Boyd D. A., McGeer A., Willey B. M., Pong-Porter V., et al. (2005). Identification of a progenitor of the CTX-M-9 group of extended-spectrum β-lactamases from Kluyvera georgiana isolated in Guyana. Antimicrob. Agents Chemother. 49, 2112–2115 10.1128/AAC.49.5.2112-2115.2005 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Partridge S. R., Tsafnat G., Coiera E., Iredell J. R. (2009). Gene cassettes and cassette arrays in mobile resistance integrons: review article. FEMS Microbiol. Rev. 33, 757–784 10.1111/j.1574-6976.2009.00175.x [DOI] [PubMed] [Google Scholar]
- Périchon B., Courvalin P., Galimand M. (2007). Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli. Antimicrob. Agents Chemother. 51, 2464–2469 10.1128/AAC.00143-07 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramirez M. S., Tolmansky M. E. (2010). Aminoglycoside modifying enzymes. Drug Resist. Updat. 13, 151–171 10.1016/j.drup.2010.08.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts M. C. (1996). Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev. 19, 1–24 [DOI] [PubMed] [Google Scholar]
- Roberts M. C. (2002). Resistance to tetracycline, macrolide-lincosamide-streptogramin, trimethoprim, and sulfonamide drug classes. Mol. Biotechn. 20, 261–284 10.1385/MB:20:3:261 [DOI] [PubMed] [Google Scholar]
- Roberts M. C. (2005). Update on acquired tetracycline resistance genes. FEMS Microbiol. Lett. 245, 195–203 10.1016/j.femsle.2005.02.034 [DOI] [PubMed] [Google Scholar]
- Roberts M. C. (2008). Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol. Lett. 282, 147–159 10.1111/j.1574-6968.2008.01145.x [DOI] [PubMed] [Google Scholar]
- Roberts M. C., Schwarz S. (2009). Tetracycline and chloramphenicol resistance mechanisms, in Antimicrobial Drug Resistance: Mechanisms of Drug Resistance, ed Mayers D. L. (New York, NY: Humana Press, c/o Springer Science+Business Media; ). [Google Scholar]
- Roberts M. C., Sutcliffe J., Courvalin P., Jensen L. B., Rood J., Seppala H. (1999). Nomenclature for macrolide and macrolide-lincosamide streptogramin B antibiotic resistance determinants. Antimicrob. Agents Chemother. 43, 2823–2830 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saladin M., Cao V. T. B., Lambert T., Donay J.-L., Herrmann J.-L., Ould-Hocine Z., et al. (2002). Diversity of CTX-M β-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol. Lett. 209, 161–168 [DOI] [PubMed] [Google Scholar]
- Schwarz S., Kehrenberg C., Doublet B., Cloeckaert A. (2004). Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev. 28, 519–542 10.1016/j.femsre.2004.04.001 [DOI] [PubMed] [Google Scholar]
- Shaw K. J., Barbachyn M. R. (2011). The oxazolidinones: past, present, and future. Ann. N.Y. Acad. Sci. 1241, 48–70 10.1111/j.1749-6632.2011.06330.x [DOI] [PubMed] [Google Scholar]
- Shaw K. J., Rather P. N., Hare R. S., Miller G. H. (1993). Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol. Rev. 57, 138–163 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shore A. C., Brennan O. M., Ehricht R., Monecke S., Schwarz S., Slickers P., et al. (2010). Identification and characterization of the multidrug resistance gene cfr in a Panton-Valentine leukocidin-positive sequence type 8 methicillin-resistant Staphylococcus aureus IVa (USA300) isolate. Antimicrob. Agents Chemother. 54, 4978–4984 10.1128/AAC.01113-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strahilevitz J., Jacoby G. A., Hooper D. C., Robicsek A. (2009). Plasmid-mediated quinolone resistance: a multifaceted threat. Clin. Microbiol. Rev. 22, 664–689 10.1128/CMR.00016-09 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torpdahl M., Hammerum A. M., Zachariasen C., Nielsen E. M. (2009). Detection of qnr genes in Salmonella isolated from humans in Denmark. J. Antimicrob. Chemother. 63, 406–408 10.1093/jac/dkn492 [DOI] [PubMed] [Google Scholar]
- Vakulenko S. B., Mobashery S. (2003). Versatility of aminoglycosides and prospects for their future. Clin. Microbiol. Rev. 16, 430–450 10.1128/CMR.16.3.430-450.2003 [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Hoek A. H. A. M., Mevius D., Guerra B., Mullany P., Roberts A. P., Aarts H. J. M. (2011). Acquired antibiotic resistance genes: an overview. Front. Microbio. 2:203 10.3389/fmicb.2011.00203 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y., He T., Schwarz S., Zhou D., Shen Z., Wu C., et al. (2012). Detection of the staphylococcal multiresistance gene cfr in Escherichia coli of domestic-animal origin. J. Antimicrob. Chemother. [Epub ahead of print]. 10.1093/jac/dks020 [DOI] [PubMed] [Google Scholar]
- Wang Y., Wang Y., Wu C. M., Schwarz S., Shen Z., Zhang W., et al. (2011). Detection of the staphylococcal multiresistance gene cfr in Proteus vulgaris of food animal origin. J. Antimicrob. Chemother. 66, 2521–2526 10.1093/jac/dkr322 [DOI] [PubMed] [Google Scholar]
- Weisblum B. (1995). Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39, 577–585 10.1128/AAC.39.3.577 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weldhagen G. F., Kim B., Cho C.-H., Lee S. H. (2006). Definitive nomenclature of GES/IBC-type extended-spectrum β-lactamases. J. Microbiol. Biotechnol. 16, 1837–1840 [Google Scholar]
- Wu H. Y., Miller G. H., Guzmán Blanco M., Hare R. S., Shaw K. J. (1997). Cloning and characterization of an aminoglycoside 6′-N-acetyltransferase gene from Citrobacter freundii which confers an altered resistance profile. Antimicrob. Agents Chemother. 41, 2439–2447 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamane K., Wachino J. I., Suzuki S., Kimura K., Shibata N., Kato H., et al. (2007). New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob. Agents Chemother. 51, 3354–3360 10.1128/AAC.00339-07 [DOI] [PMC free article] [PubMed] [Google Scholar]