Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Sep;77(9):5028–5031. doi: 10.1073/pnas.77.9.5028

Coordination environment and fluoride binding of type 2 copper in the blue copper protein ascorbate oxidase

John H Dawson 1,*, David M Dooley 1,, Harry B Gray 1,
PMCID: PMC349986  PMID: 16592868

Abstract

The coordination environment of the type 2 (nonblue) copper in native ascorbate oxidase (L-ascorbate:oxygen oxidoreductase, EC 1.10.3.3) and of a derivative of the enzyme having the type 1 (blue) copper reversibly bleached has been examined by electron paramagnetic resonance (EPR) spectroscopy. In the g[unk] region of the spectrum of bleached ascorbate oxidase, a seven-line superhyperfine pattern is seen that is attributed to the presence of three nitrogen-donor ligands to a type 2 copper having tetragonal geometry. The superhyperfine splitting patterns in the g∥ region of the EPR spectra of native and bleached ascorbate oxidase show that as many as two fluorides may bind to type 2 copper. Because fluoride inhibits the enzyme competitively with respect to ascorbic acid, it is proposed that the type 2 copper is part of the ascorbate binding site.

Keywords: nonblue copper, electron paramagnetic resonance, square planar geometry, nitrogenous ligands

Full text

PDF
5028

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adman E. T., Stenkamp R. E., Sieker L. C., Jensen L. H. A crystallographic model for azurin a 3 A resolution. J Mol Biol. 1978 Jul 25;123(1):35–47. doi: 10.1016/0022-2836(78)90375-3. [DOI] [PubMed] [Google Scholar]
  2. Avigliano L., Desideri A., Urbanelli S., Mondovì B., Marchesini A. Removal of non-blue copper from ascorbate oxidase. FEBS Lett. 1979 Apr 15;100(2):318–320. doi: 10.1016/0014-5793(79)80360-9. [DOI] [PubMed] [Google Scholar]
  3. Beinert H., Palmer G. Contributions of EPR spectroscopy to our knowledge of oxidative enzymes. Adv Enzymol Relat Areas Mol Biol. 1965;27:105–198. doi: 10.1002/9780470122723.ch3. [DOI] [PubMed] [Google Scholar]
  4. Bereman R. D., Kosman D. J. Stereoelectronic properties of metalloenzymes. 5. Identification and assignment of ligand hyperfine splittings in the electron spin resonance spectrum of galactose oxidase. J Am Chem Soc. 1977 Oct 26;99(22):7322–7325. doi: 10.1021/ja00464a036. [DOI] [PubMed] [Google Scholar]
  5. Brändén R., Malmström B. G., Vänngård T. The effect of fluoride on the spectral and catalytic properties of the three copper-containing oxidases. Eur J Biochem. 1973 Jul 2;36(1):195–200. doi: 10.1111/j.1432-1033.1973.tb02901.x. [DOI] [PubMed] [Google Scholar]
  6. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  7. Dawson C. R., Strothkamp K. G., Krul K. G. Ascorbate oxidase and related copper proteins. Ann N Y Acad Sci. 1975 Sep 30;258:209–220. doi: 10.1111/j.1749-6632.1975.tb29281.x. [DOI] [PubMed] [Google Scholar]
  8. Dawson J. H., Dooley D. M., Gray H. B. Coordination environment and fluoride binding of type 2 copper in the blue copper oxidase ceruloplasmin. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4078–4081. doi: 10.1073/pnas.75.9.4078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Deinum J., Reinhammar B., Marchesini A. The stoichiometry of the three different types of copper in ascorbate oxidase from green zucchini squash. FEBS Lett. 1974 Jun 15;42(3):241–245. doi: 10.1016/0014-5793(74)80736-2. [DOI] [PubMed] [Google Scholar]
  10. Fee J. A. Transition metal electron paramagnetic resonance related to proteins. Methods Enzymol. 1978;49:512–528. doi: 10.1016/s0076-6879(78)49022-6. [DOI] [PubMed] [Google Scholar]
  11. Lee M. H., Dawson C. R. Ascorbate oxidase. Further studies on the purification of the enzyme. J Biol Chem. 1973 Oct 10;248(19):6596–6602. [PubMed] [Google Scholar]
  12. Lee M. H., Dawson C. R. Ascorbate oxidase. Spectral characteristics of the enzyme. J Biol Chem. 1973 Oct 10;248(19):6603–6609. [PubMed] [Google Scholar]
  13. Leeuwen F. X., Wever R., Gelder B. F., Avigliano L., Mondovi B. The interaction of nitric oxide with ascorbate oxidase. Biochim Biophys Acta. 1975 Oct 22;403(2):285–291. doi: 10.1016/0005-2744(75)90058-3. [DOI] [PubMed] [Google Scholar]
  14. Malkin R., Malmström B. G. The state and function of copper in biological systems. Adv Enzymol Relat Areas Mol Biol. 1970;33:177–244. doi: 10.1002/9780470122785.ch4. [DOI] [PubMed] [Google Scholar]
  15. Malkin R., Malmström R. G., Vänngård T. The requirement of the "non-blue" copper (II) for the activity of fungal laccase. FEBS Lett. 1968 Jul;1(1):50–54. doi: 10.1016/0014-5793(68)80016-x. [DOI] [PubMed] [Google Scholar]
  16. Mason H. S. Binuclear copper clusters as active sites for oxidases. Adv Exp Med Biol. 1976;74:464–469. doi: 10.1007/978-1-4684-3270-1_39. [DOI] [PubMed] [Google Scholar]
  17. McMillin D. R., Holwerda R. A., Gray H. B. Preparation and spectroscopic studies of cobalt(II)-stellacyanin. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1339–1341. doi: 10.1073/pnas.71.4.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McMillin D. R., Rosenberg R. C., Gray H. B. Preparation and spectroscopic studies of cobalt(II) derivatives of blue copper proteins. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4760–4762. doi: 10.1073/pnas.71.12.4760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mondovi B., Avigliano L., Rotilio G., Finazzi Agro A., Gerosa P., Giovagnoli C. The effect of azide on the spectral and catalytic properties of ascorbate oxidase. Mol Cell Biochem. 1975 May 30;7(2):131–135. doi: 10.1007/BF01792080. [DOI] [PubMed] [Google Scholar]
  20. Mondoví B., Graziani M. T., Mims W. B., Oltzik R., Peisach J. Pulsed electron paramagnetic resonance studies of types I and II coper of Rhus vernicifera laccase and porcine ceruloplasmin. Biochemistry. 1977 Sep 20;16(19):4198–4202. doi: 10.1021/bi00638a011. [DOI] [PubMed] [Google Scholar]
  21. Mondoví B., Morpurgo L., Rotilio G., Finazzi-Agró A. Recent studies on copper containing oxidases. Adv Exp Med Biol. 1976;74:424–437. doi: 10.1007/978-1-4684-3270-1_36. [DOI] [PubMed] [Google Scholar]
  22. Nakamura T., Makino N., Ogura Y. Purification and properties of ascorbate oxidase from cucumber. J Biochem. 1968 Aug;64(2):189–195. doi: 10.1093/oxfordjournals.jbchem.a128879. [DOI] [PubMed] [Google Scholar]
  23. Rydén L., Björk I. Reinvestigation of some physicochemical and chemical properties of human ceruloplasmin (ferroxidase). Biochemistry. 1976 Aug 10;15(16):3411–3417. doi: 10.1021/bi00661a003. [DOI] [PubMed] [Google Scholar]
  24. Solomon E. I., Hare J. W., Gray H. B. Spectroscopic studies and a structural model for blue copper centers in proteins. Proc Natl Acad Sci U S A. 1976 May;73(5):1389–1393. doi: 10.1073/pnas.73.5.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Solomon E. I., Rawlings J., McMillin D. R., Stephens P. J., Gray H. B. Infrared and visible circular dichroism and magnetic circular dichroism studies on cobalt (II)-substituted blue copper proteins. J Am Chem Soc. 1976 Dec 8;98(25):8046–8048. doi: 10.1021/ja00441a028. [DOI] [PubMed] [Google Scholar]
  26. Strothkamp K. G., Dawson C. R. Concerning the quaternary structure of ascorbate oxidase. Biochemistry. 1974 Jan 29;13(3):434–440. doi: 10.1021/bi00700a006. [DOI] [PubMed] [Google Scholar]
  27. Strothkamp R. E., Dawson C. R. A spectroscopic and kinetic investigation of anion binding to ascorbate oxidase. Biochemistry. 1977 May 3;16(9):1926–1929. doi: 10.1021/bi00628a026. [DOI] [PubMed] [Google Scholar]
  28. Tullius T. D., Frank P., Hodgson K. O. Characterization of the blue copper site in oxidized azurin by extended x-ray absorption fine structure: Determination of a short Cu-S distance. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4069–4073. doi: 10.1073/pnas.75.9.4069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  30. Wever R., van Leeuwen F. X., van Gelder B. F. The reaction of nitric oxide with ceruloplasmin. Biochim Biophys Acta. 1973 Apr 12;302(2):236–239. doi: 10.1016/0005-2744(73)90152-6. [DOI] [PubMed] [Google Scholar]
  31. van Leeuwen F. X., van Gelder B. F. A spectroscopic study of nitric-oxide-treated ceruloplasmin. Eur J Biochem. 1978 Jun 15;87(2):305–312. doi: 10.1111/j.1432-1033.1978.tb12379.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES