Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Sep;77(9):5145–5148. doi: 10.1073/pnas.77.9.5145

Photochemically induced dynamic nuclear polarization investigation of complex formation of the NH2-terminal DNA-binding domain of lac repressor with poly[d(AT)].

F Buck, H Rüterjans, R Kaptein, K Beyreuther
PMCID: PMC350013  PMID: 6933550

Abstract

The interaction of the NH2-terminal DNA-binding domain of lac repressor with synthetic oligo[d(AT)] was studied by a photo-CIDNP technique (CIDNP is chemically induced dynamic nuclear polarization). Three of the four tyrosines of the NH2-terminal region were found to be accessible to the photosensitive dye. The corresponding ring proton resonances were enhanced in the photo-CIDNP 1H NMR spectrum, and the only histidine (histidine 29) was located at the surface of the domain, which is supposed to be linked to the core protein of lac repressor by a flexible hinge region. After complex formation of the NH2-terminal region with oligo[d(AT)], two of the three tyrosine residues were no longer accessible to solvent or to photosensitive dye, which is strong evidence that the two tyrosines are part of the contact region.

Full text

PDF
5145

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander M. E., Burgum A. A., Noall R. A., Shaw M. D., Matthews K. S. Modification of tyrosine residues of the lactose repressor protein. Biochim Biophys Acta. 1977 Aug 23;493(2):367–379. doi: 10.1016/0005-2795(77)90193-3. [DOI] [PubMed] [Google Scholar]
  2. Beyreuther K., Adler K., Geisler N., Klemm A. The amino-acid sequence of lac repressor. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3576–3580. doi: 10.1073/pnas.70.12.3576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bourgeois S., Pfahl M. Repressors. Adv Protein Chem. 1976;30:1–99. doi: 10.1016/s0065-3233(08)60478-7. [DOI] [PubMed] [Google Scholar]
  4. Buck F., Rüterjans H., Beyreuther K. 1H NMR study of the lactose repressor from Escherichia coli. FEBS Lett. 1978 Dec 15;96(2):335–338. doi: 10.1016/0014-5793(78)80430-x. [DOI] [PubMed] [Google Scholar]
  5. Davis A. W., Phillips D. R. A defined molecular-weight distribution of deoxyribonucleic acid after extensive sonication. Biochem J. 1978 Jul 1;173(1):179–183. doi: 10.1042/bj1730179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fanning T. G. Iodination of Escherichia coli lac repressor. Effect of tyrosine modification on repressor activity. Biochemistry. 1975 Jun 3;14(11):2512–2520. doi: 10.1021/bi00682a034. [DOI] [PubMed] [Google Scholar]
  7. Garssen G. J., Kaptein R., Schoenmakers J. G., Hilbers C. W. A photo-CIDNP study of the interaction of oligonucleotides with gene-5 protein of bacteriophage M13. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5281–5285. doi: 10.1073/pnas.75.11.5281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Geisler N., Weber K. Isolation of amino-terminal fragment of lactose repressor necessary for DNA binding. Biochemistry. 1977 Mar 8;16(5):938–943. doi: 10.1021/bi00624a020. [DOI] [PubMed] [Google Scholar]
  9. Kaptein R., Dijkstra K., Nicolay K. Laser photo-CIDNP as a surface probe for proteins in solution. Nature. 1978 Jul 20;274(5668):293–294. doi: 10.1038/274293a0. [DOI] [PubMed] [Google Scholar]
  10. Müller-Hill B. Lac repressor and lac operator. Prog Biophys Mol Biol. 1975;30(2-3):227–252. doi: 10.1016/0079-6107(76)90011-0. [DOI] [PubMed] [Google Scholar]
  11. Ogata R. T., Gilbert W. An amino-terminal fragment of lac repressor binds specifically to lac operator. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5851–5854. doi: 10.1073/pnas.75.12.5851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ogata R. T., Gilbert W. DNA-binding site of lac repressor probed by dimethylsulfate methylation of lac operator. J Mol Biol. 1979 Aug 25;132(4):709–728. doi: 10.1016/0022-2836(79)90384-x. [DOI] [PubMed] [Google Scholar]
  13. Otsuka A. S., Price P. A. Removal of proteases from DNase I by chromatography over agarose with covalently attached lima bean protease inhibitor. Anal Biochem. 1974 Nov;62(1):180–187. doi: 10.1016/0003-2697(74)90379-0. [DOI] [PubMed] [Google Scholar]
  14. Patel D. J., Canuel L. Nuclear magnetic resonance studies of the helix-coil transition of poly (dA-dT) in aqueous solution. Proc Natl Acad Sci U S A. 1976 Mar;73(3):674–678. doi: 10.1073/pnas.73.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wade-Jardetzky N., Bray R. P., Conover W. W., Jardetzky O., Geisler N., Weber K. Differential mobility of the N-terminal headpiece in the lac-repressor protein. J Mol Biol. 1979 Feb 25;128(2):259–264. doi: 10.1016/0022-2836(79)90129-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES