Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Sep;77(9):5346–5350. doi: 10.1073/pnas.77.9.5346

Action of granulocyte-macrophage colony-stimulating factors: studies using a human leukemia cell line.

A J Lusis, H P Koeffler
PMCID: PMC350055  PMID: 6159645

Abstract

Granulocyte-macrophage colony-stimulating factors (CSFs) have previously been shown to stimulate colony formation in soft agar culture by a human myelogenous leukemia cell line known as KG-1. We have used KG-1 cells as a model system to investigate the interaction of CSF with myeloid cells. We now report that exposure of KG-1 cells to human CSFs in liquid culture results in a rapid (within 3 hr) burst of RNA synthesis and, after a lag of about 10 hr, a stimulation of DNA and protein synthesis. RNA and protein synthesis were maximally stimulated about 2-fold and DNA synthesis was stimulated about 2.5-fold. The stimulation was specific; various growth factors, hormones, and mouse CSFs had no effect on KG-1 macromolecular synthesis. Treatment with CSF did not discernibly alter the morphological appearance of the KG-1 cells (primarily myeloblasts) nor did it qualitatively affect the pattern of newly synthesized proteins separable by one- and two-dimensional electrophoresis. Several myeloid leukemia cell lines that were not responsive to CSF in agar culture, including a dedifferentiated variant of KG-1, showed little or no stimulation of macromolecular synthesis upon exposure to CSF. We have used the CSF-dependent stimulation of macromolecular synthesis of KG-1 to develop a rapid, sensitive microassay for human CSFs. The assay, involving thymidine incorporation by the cells, should be useful for characterization and purification of human CSFs.

Full text

PDF
5346

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradley T. R., Metcalf D. The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci. 1966 Jun;44(3):287–299. doi: 10.1038/icb.1966.28. [DOI] [PubMed] [Google Scholar]
  2. Bradley T. R., Stanley E. R., Sumner M. A. Factors from mouse tissues stimulating colony growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci. 1971 Dec;49(6):595–603. doi: 10.1038/icb.1971.65. [DOI] [PubMed] [Google Scholar]
  3. Burgess A. W., Camakaris J., Metcalf D. Purification and properties of colony-stimulating factor from mouse lung-conditioned medium. J Biol Chem. 1977 Mar 25;252(6):1998–2003. [PubMed] [Google Scholar]
  4. Chang S. C., Sikkema D., Goldwasser E. Evidence for an erythropoietin receptor protein on rat bone marrow cells. Biochem Biophys Res Commun. 1974 Mar 25;57(2):399–405. doi: 10.1016/0006-291x(74)90944-9. [DOI] [PubMed] [Google Scholar]
  5. Collins S. J., Gallo R. C., Gallagher R. E. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature. 1977 Nov 24;270(5635):347–349. doi: 10.1038/270347a0. [DOI] [PubMed] [Google Scholar]
  6. Di Persio J. F., Brennan J. K., Lichtman M. A., Speiser B. L. Human cell lines that elaborate colon-stimulating activity for the marrow cells of man and other species. Blood. 1978 Mar;51(3):507–519. [PubMed] [Google Scholar]
  7. Fojo S. S., Wu M. C., Gross M. A., Purcell Y., Yunis A. A. Purification and characterization of a colony stimulating factor from human lung. Biochemistry. 1978 Jul 25;17(15):3109–3116. doi: 10.1021/bi00608a026. [DOI] [PubMed] [Google Scholar]
  8. Golde D. W., Cline M. J. Identification of the colony-stimulating cell in human peripheral blood. J Clin Invest. 1972 Nov;51(11):2981–2983. doi: 10.1172/JCI107124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Golde D. W., Quan S. G., Cline M. J. Human T lymphocyte cell line producing colony-stimulating activity. Blood. 1978 Nov;52(5):1068–1072. [PubMed] [Google Scholar]
  10. Koeffler H. P., Golde D. W. Acute myelogenous leukemia: a human cell line responsive to colony-stimulating activity. Science. 1978 Jun 9;200(4346):1153–1154. doi: 10.1126/science.306682. [DOI] [PubMed] [Google Scholar]
  11. Marks P. A., Rifkind R. A. Erythroleukemic differentiation. Annu Rev Biochem. 1978;47:419–448. doi: 10.1146/annurev.bi.47.070178.002223. [DOI] [PubMed] [Google Scholar]
  12. Maxfield F. R., Davies P. J., Klempner L., Willingham M. C., Pastan I. Epidermal growth factor stimulation of DNA synthesis is potentiated by compounds that inhibit its clustering in coated pits. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5731–5735. doi: 10.1073/pnas.76.11.5731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  14. Price G. B., Senn J. S., McCulloch E. A., Till J. E. The isolation and properties of granulocytic colony-stimulating activities from medium conditioned by human peripheral leucocytes. Biochem J. 1975 May;148(2):209–217. doi: 10.1042/bj1480209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ross D. D., Groth D. P., Kinkade J. M., Jr Effects of urinary proteins from certain leukemics upon macromolecular synthesis and enzyme levels in bone marrow cultures. J Biol Chem. 1975 Nov 25;250(22):8829–8833. [PubMed] [Google Scholar]
  16. Sachs L. Control of normal cell differentiation and the phenotypic reversion of malignancy in myeloid leukaemia. Nature. 1978 Aug 10;274(5671):535–539. doi: 10.1038/274535a0. [DOI] [PubMed] [Google Scholar]
  17. Stanley E. R. Colony-stimulating factor (CSF) radioimmunoassay: detection of a CSF subclass stimulating macrophage production. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2969–2973. doi: 10.1073/pnas.76.6.2969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stanley E. R., Hansen G., Woodcock J., Metcalf D. Colony stimulating factor and the regulation of granulopoiesis and macrophage production. Fed Proc. 1975 Dec;34(13):2272–2278. [PubMed] [Google Scholar]
  19. Stanley E. R., Heard P. M. Factors regulating macrophage production and growth. Purification and some properties of the colony stimulating factor from medium conditioned by mouse L cells. J Biol Chem. 1977 Jun 25;252(12):4305–4312. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES