Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Sep;77(9):5471–5475. doi: 10.1073/pnas.77.9.5471

Prolonged derangements of canine myocardial purine metabolism after a brief coronary artery occlusion not associated with anatomic evidence of necrosis

Laurence W V DeBoer 1,2, Joanne S Ingwall 1,2, Robert A Kloner 1,2,*, Eugene Braunwald 1,2
PMCID: PMC350082  PMID: 6933566

Abstract

Changes in myocardial purine metabolism were studied after temporary coronary artery occlusion and subsequent reperfusion in the dog. Sequential myocardial biopsies were performed to allow for measurements of ATP, adenine nucleotide, nucleoside, and base concentrations after 15 min of ischemia, and after 90 min and 72 hr of reperfusion following this period of ischemia. Control, nonischemic sites were also sampled. After 15 min of coronary occlusion, subendocardial ATP concentrations (reported in nmol/mg of protein; mean ± SEM) were depressed in the ischemic zone at 19.9 ± 3.5 compared to 38.1 ± 2.8 in the nonischemic zone (P < 0.001). Subepicardial ATP concentrations also were depressed at 27.0 ± 2.2 in ischemic sites compared to subepicardial nonischemic sites (40.0 ± 4.0, P < 0.005). After 90 min of reperfusion ATP concentrations remained depressed in the previously ischemic subendocardium 26.8 ± 4.2 (P < 0.025 vs. nonischemic sites). After 72 hr of reperfusion, ATP was still depressed in the previously ischemic subendocardium at 29.2 ± 2.5 (P < 0.025 vs. nonischemic) and subepicardium (27.9 ± 3.3, P < 0.05 vs. nonischemic). Total purines were determined as the sum of ATP, ADP, AMP, adenosine, inosine, and hypoxanthine. After 15 min of occlusion, the total purine pool in the ischemic subendocardium tended towards being lower than in the nonischemic zone (42.0 ± 5.9 vs. 53.8 ± 5.2, not significant) but in the ischemic subepicardium the total purine pool was similar to that in the nonischemic zone. After 90 min of reperfusion the previously ischemic subendocardial purine pool was reduced compared to the nonischemic zone (39.0 ± 4.8, P < 0.025). Total purines were also depleted in both the subendocardium and subepicardium of previously ischemic zones after 72 hr of reperfusion (44.5 ± 2.9 and 40.0 ± 4.4, respectively, P < 0.05). Histologic analysis of the previously ischemic tissue revealed no evidence of necrosis. Therefore, brief temporary coronary artery occlusions not associated with anatomic evidence of necrosis may result in prolonged abnormalities of ATP concentration and significant depletion of the total purine pool.

Keywords: adenosine triphosphate, myocardial infarction, coronary reperfusion, myocardial ischemia

Full text

PDF
5471

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apstein C. S., Deckelbaum L., Mueller M., Hagopian L., Hood W. B., Jr Graded global ischemia and reperfusion. Cardiac function and lactate metabolism. Circulation. 1977 Jun;55(6):864–872. doi: 10.1161/01.cir.55.6.864. [DOI] [PubMed] [Google Scholar]
  2. Berne R. M., Rubio R. Adenine nucleotide metabolism in the heart. Circ Res. 1974 Sep;35 (Suppl 3):109–120. [PubMed] [Google Scholar]
  3. Bresnahan G. F., Roberts R., Shell W. E., Ross J., Jr, Sobel B. E. Deleterious effects due to hemorrhage after myocardial reperfusion. Am J Cardiol. 1974 Jan;33(1):82–86. doi: 10.1016/0002-9149(74)90742-5. [DOI] [PubMed] [Google Scholar]
  4. Capurro N. L., Goldstein R. E., Aamodt R., Smith H. J., Epstein S. E. Loss of microspheres from ischemic canine cardiac tissue: an important technical limitation. Circ Res. 1979 Feb;44(2):223–227. doi: 10.1161/01.res.44.2.223. [DOI] [PubMed] [Google Scholar]
  5. Costantino C., Corday E., Lang T. W., Meerbaum S., Brasch J., Kaplan L., Rubins S., Gold H., Osher J. Revascularization after 3 hours of coronary arterial occlusion: effects on regional cardiac metabolic function and infarct size. Am J Cardiol. 1975 Sep;36(3):368–384. doi: 10.1016/0002-9149(75)90492-0. [DOI] [PubMed] [Google Scholar]
  6. Fox A. C., Reed G. E., Glassman E., Kaltman A. J., Silk B. B. Release of adenosine from human hearts during angina induced by rapid atrial pacing. J Clin Invest. 1974 May;53(5):1447–1457. doi: 10.1172/JCI107693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fox A. C., Reed G. E., Meilman H., Silk B. B. Release of nucleosides from canine and human hearts as an index of prior ischemia. Am J Cardiol. 1979 Jan;43(1):52–58. doi: 10.1016/0002-9149(79)90044-4. [DOI] [PubMed] [Google Scholar]
  8. Ginks W. R., Sybers H. D., Maroko P. R., Covell J. W., Sobel B. E., Ross J., Jr Coronary artery reperfusion. II. Reduction of myocardial infarct size at 1 week after the coronary occlusion. J Clin Invest. 1972 Oct;51(10):2717–2723. doi: 10.1172/JCI107091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hearse J. D., Opie L. H., Katzeff I. E., Lubbe W. F., Van der Werff T. J., Peisach M., Boulle G. Characterization of the "border zone" in acute regional ischemia in the dog. Am J Cardiol. 1977 Nov;40(5):716–726. doi: 10.1016/0002-9149(77)90187-4. [DOI] [PubMed] [Google Scholar]
  10. Heyndrickx G. R., Millard R. W., McRitchie R. J., Maroko P. R., Vatner S. F. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest. 1975 Oct;56(4):978–985. doi: 10.1172/JCI108178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hillis L. D., Khuri S. F., Braunwald E., Kloner R. A., Tow D., Barsamian E., Maroko P. R. Assessment of the efficacy of interventions to limit ischemic injury by direct measurement of intramural carbon dioxide tension after coronary artery occlusion in the dog. J Clin Invest. 1979 Jan;63(1):99–107. doi: 10.1172/JCI109284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jennings R. B. Early phase of myocardial ischemic injury and infarction. Am J Cardiol. 1969 Dec;24(6):753–765. doi: 10.1016/0002-9149(69)90464-0. [DOI] [PubMed] [Google Scholar]
  13. Jennings R. B., Hawkins H. K., Lowe J. E., Hill M. L., Klotman S., Reimer K. A. Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am J Pathol. 1978 Jul;92(1):187–214. [PMC free article] [PubMed] [Google Scholar]
  14. Kloner R. A., Fishbein M. C., Maclean D., Braunwald E., Maroko P. R. Effect of hyaluronidase during the early phase of acute myocardial ischemia: an ultrastructural and morphometric analysis. Am J Cardiol. 1977 Jul;40(1):43–49. doi: 10.1016/0002-9149(77)90098-4. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Maguire M. H., Lukas M. C., Rettie J. F. Adenine nucleotide salvage synthesis in the rat heart; pathways of adnosine salvage. Biochim Biophys Acta. 1972 Mar 14;262(2):108–115. doi: 10.1016/0005-2787(72)90223-7. [DOI] [PubMed] [Google Scholar]
  17. Maroko P. R., Kjekshus J. K., Sobel B. E., Watanabe T., Covell J. W., Ross J., Jr, Braunwald E. Factors influencing infarct size following experimental coronary artery occlusions. Circulation. 1971 Jan;43(1):67–82. doi: 10.1161/01.cir.43.1.67. [DOI] [PubMed] [Google Scholar]
  18. Neely J. R., Rovetto M. J., Whitmer J. T., Morgan H. E. Effects of ischemia on function and metabolism of the isolated working rat heart. Am J Physiol. 1973 Sep;225(3):651–658. doi: 10.1152/ajplegacy.1973.225.3.651. [DOI] [PubMed] [Google Scholar]
  19. Olsson R. A., Snow J. A., Gentry M. K. Adenosine metabolism in canine myocardial reactive hyperemia. Circ Res. 1978 Mar;42(3):358–362. doi: 10.1161/01.res.42.3.358. [DOI] [PubMed] [Google Scholar]
  20. Puri P. S. Contractile and biochemical effects of coronary reperfusion after extended periods of coronary occlusion. Am J Cardiol. 1975 Aug;36(2):244–251. doi: 10.1016/0002-9149(75)90533-0. [DOI] [PubMed] [Google Scholar]
  21. Radvany P., Davis M. A., Muller J. E., Maroko P. R. Effects of minoxidil on coronary collateral flow and acute myocardial injury following experimental coronary artery occlusion. Cardiovasc Res. 1978 Feb;12(2):120–126. doi: 10.1093/cvr/12.2.120. [DOI] [PubMed] [Google Scholar]
  22. Smith G. T., Soeter J. R., Haston H. H., McNamara J. J. Coronary reperfusion in primates. Serial electrocardiographic and histologic assessment. J Clin Invest. 1974 Dec;54(6):1420–1427. doi: 10.1172/JCI107889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Theroux P., Ross J., Jr, Franklin D., Kemper W. S., Sasayama S. Coronary arterial reperfusion. III. Early and late effects on regional myocardial function and dimensions in conscious dogs. Am J Cardiol. 1976 Nov 4;38(5):599–606. doi: 10.1016/s0002-9149(76)80009-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES