Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Sep;77(9):5487–5491. doi: 10.1073/pnas.77.9.5487

Determination of deoxyhemoglobin S polymer in sickle erythrocytes upon deoxygenation.

C T Noguchi, D A Torchia, A N Schechter
PMCID: PMC350086  PMID: 6933568

Abstract

We have used 13C/1H magnetic double-resonance spectroscopy to measure the amount of sickle hemoglobin polymer within sickle erythrocytes as a function of oxygen saturation. We previously showed that the methods of cross-polarization and scalar decoupling could be used to measure accurately the polymer fraction in deoxygenated sickle hemoglobin solutions [Noguchi, C.T., Torchia, D.A. & Schechter, A.N. (1979) Proc. Natl. Acad. Sci. USA 76, 4936-4940]. Our measurements show that the amount of intracellular deoxyhemoglobin S polymer increases monotonically with decreasing oxygen saturation. Polymer can be detected at oxygen saturation values above 90%. This result can be theoretically explained by the excluded volume effect of the oxyhemoglobin S in the cell. The very high total intracellular hemoglobin concentration (34 g/dl) reduces the amount of soluble deoxyhemoglobin S to about 3 g/dl at 90% oxygen saturation. The agreement between theory and experiment indicates that the equilibrium properties of intracellular polymerization can be described by the analyses resulting from studies of concentrated sickle hemoglobin solutions. The curve for polymer formation as a function of oxygen saturation is roughly hyperbolic whereas that for cell sickling is sigmoidal; the difference is most apparent for measurements at pH 7.65. Intracellular polymer formation may in general have a different relationship to oxygen saturation than cell sickling and may be a more meaningful parameter of the pathophysiological process in sickle cell anemia than cell morphology. In addition, measurements of intracellular polymer should be useful in evaluating potential therapeutic agents.

Full text

PDF
5487

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Behe M. J., Englander S. W. Sickle hemoglobin gelation. Reaction order and critical nucleus size. Biophys J. 1978 Jul;23(1):129–145. doi: 10.1016/S0006-3495(78)85438-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benesch R. E., Benesch R., Edalji R., Kwong S. Intermolecular effects in the polymerization of hemoglobin S. Biochem Biophys Res Commun. 1978 Apr 28;81(4):1307–1312. doi: 10.1016/0006-291x(78)91278-0. [DOI] [PubMed] [Google Scholar]
  3. Bertles J. F., Rabinowitz R., Döbler J. Hemoglobin interaction: modification of solid phase composition in the sickling phenomenon. Science. 1970 Jul 24;169(3943):375–377. doi: 10.1126/science.169.3943.375. [DOI] [PubMed] [Google Scholar]
  4. Bookchin R. M., Balazs T., Landau L. C. Determinants of red cell sickling. Effects of varying pH and of increasing intracellular hemoglobin concentration by osmotic shrinkage. J Lab Clin Med. 1976 Apr;87(4):597–616. [PubMed] [Google Scholar]
  5. Briehl R. W. Gelation of sickle cell hemoglobin. IV. Phase transitions in hemoglobin S gels: separate measures of aggregation and solution--gel equilibrium. J Mol Biol. 1978 Aug 25;123(4):521–538. doi: 10.1016/0022-2836(78)90205-x. [DOI] [PubMed] [Google Scholar]
  6. Briehl R. W., Herzfeld J. Tactoidal state and phase transitions in systems of linear polymers of variable length. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2740–2744. doi: 10.1073/pnas.76.6.2740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cottam G. L., Waterman M. R. Effect of oxygen concentration on trasverse water proton relaxation times in erythrocytes homozygous and heterozygous for hemoglonin S. Arch Biochem Biophys. 1976 Nov;177(1):293–298. doi: 10.1016/0003-9861(76)90439-2. [DOI] [PubMed] [Google Scholar]
  8. Crepeau R. H., Dykes G., Garrell R., Edelstein S. J. Diameter of haemoglobin S fibres in sickled cells. Nature. 1978 Aug 10;274(5671):616–617. doi: 10.1038/274616a0. [DOI] [PubMed] [Google Scholar]
  9. Dean J., Schechter A. N. Sickle-cell anemia: molecular and cellular bases of therapeutic approaches (first of three parts). N Engl J Med. 1978 Oct 5;299(14):752–763. doi: 10.1056/NEJM197810052991405. [DOI] [PubMed] [Google Scholar]
  10. Dykes G. W., Crepeau R. H., Edelstein S. J. Three-dimensional reconstruction of the 14-filament fibers of hemoglobin S. J Mol Biol. 1979 Jun 5;130(4):451–472. doi: 10.1016/0022-2836(79)90434-0. [DOI] [PubMed] [Google Scholar]
  11. Eaton W. A., Hofrichter J., Ross P. D. Editorial: Delay time of gelation: a possible determinant of clinical severity in sickle cell disease. Blood. 1976 Apr;47(4):621–627. [PubMed] [Google Scholar]
  12. Elbaum D., Nagel R. L., Bookchin R. M., Herskovits T. T. Effect of alkylureas on the polymerization of hemoglobin S. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4718–4722. doi: 10.1073/pnas.71.12.4718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Good N. E., Winget G. D., Winter W., Connolly T. N., Izawa S., Singh R. M. Hydrogen ion buffers for biological research. Biochemistry. 1966 Feb;5(2):467–477. doi: 10.1021/bi00866a011. [DOI] [PubMed] [Google Scholar]
  14. Hahn J. A., Messer M. J., Bradley T. B. Ultrastructure of sickling and unsickling in time-lapse studies. Br J Haematol. 1976 Dec;34(4):559–565. doi: 10.1111/j.1365-2141.1976.tb03601.x. [DOI] [PubMed] [Google Scholar]
  15. Hassan W., Beuzard Y., Rosa J. Inhibition of erythrocyte sickling by cystamine, a thiol reagent. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3288–3292. doi: 10.1073/pnas.73.9.3288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hofrichter J., Hendricker D. G., Eaton W. A. Structure of hemoglobin S fibers: optical determination of the molecular orientation in sickled erythrocytes. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3604–3608. doi: 10.1073/pnas.70.12.3604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hofrichter J. Ligand binding and the gelation of sickle cell hemoglobin. J Mol Biol. 1979 Mar 5;128(3):335–369. doi: 10.1016/0022-2836(79)90092-5. [DOI] [PubMed] [Google Scholar]
  18. Hofrichter J., Ross P. D., Eaton W. A. Supersaturation in sickle cell hemoglobin solutions. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3035–3039. doi: 10.1073/pnas.73.9.3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Imai K. Analyses of oxygen equilibria of native and chemically modified human adult hemoglobins on the basis of Adair's stepwise oxygenation theory and the allosteric model of Monod, Wyman, and Changeux. Biochemistry. 1973 Feb 27;12(5):798–808. doi: 10.1021/bi00729a003. [DOI] [PubMed] [Google Scholar]
  20. James T. L., Matthews R., Matson G. B. Hemoglobin aggregation in oxygenated sickle cells studies by carbon-13 rotating frame spin-lattice relaxation in the presence of an off-resonance radiofrequency field. Biopolymers. 1979 Jul;18(7):1763–1768. doi: 10.1002/bip.1979.360180713. [DOI] [PubMed] [Google Scholar]
  21. Lindstrom T. R., Koenig S. H., Boussios T., Bertles J. F. Intermolecular interactions of oxygenated sickle hemoglobin molecules in cells and cell-free solutions. Biophys J. 1976 Jun;16(6):679–689. doi: 10.1016/S0006-3495(76)85721-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Magdoff-Fairchild B., Chiu C. C. X-ray diffraction studies of fibers and crystals of deoxygenated sickle cell hemoglobin. Proc Natl Acad Sci U S A. 1979 Jan;76(1):223–226. doi: 10.1073/pnas.76.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Minton A. P. A thermodynamic model for gelation of sickle-cell hemoglobin. J Mol Biol. 1974 Feb 5;82(4):483–498. doi: 10.1016/0022-2836(74)90243-5. [DOI] [PubMed] [Google Scholar]
  24. Minton A. P. Non-ideality and the thermodynamics of sickle-cell hemoglobin gelation. J Mol Biol. 1977 Feb 15;110(1):89–103. doi: 10.1016/s0022-2836(77)80100-9. [DOI] [PubMed] [Google Scholar]
  25. Noguchi C. T., Torchia D. A., Schechter A. N. 13C NMR quantitation of polymer in deoxyhemoglobin S gels. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4936–4940. doi: 10.1073/pnas.76.10.4936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pumphrey J. G., Steinhardt J. Crystallization of sickle hemoglobin from gently agitated solutions--an alternative to gelation. J Mol Biol. 1977 May 25;112(3):359–375. doi: 10.1016/s0022-2836(77)80187-3. [DOI] [PubMed] [Google Scholar]
  27. Rampling M. W., Sirs J. A. The rate of sickling of cells containing sickle-cell haemoglobin. Clin Sci Mol Med. 1973 Nov;45(5):655–664. doi: 10.1042/cs0450655. [DOI] [PubMed] [Google Scholar]
  28. Ross P. D., Hofrichter J., Eaton W. A. Thermodynamics of gelation of sickle cell deoxyhemoglobin. J Mol Biol. 1977 Sep 15;115(2):111–134. doi: 10.1016/0022-2836(77)90093-6. [DOI] [PubMed] [Google Scholar]
  29. Ross P. D., Minton A. P. Analysis of non-ideal behavior in concentrated hemoglobin solutions. J Mol Biol. 1977 May 25;112(3):437–452. doi: 10.1016/s0022-2836(77)80191-5. [DOI] [PubMed] [Google Scholar]
  30. Ross P. D., Minton A. P. The effect of non-aggregating proteins upon the gelation of sickle cell hemoglobin: model calculations and data analysis. Biochem Biophys Res Commun. 1979 Jun 27;88(4):1308–1314. doi: 10.1016/0006-291x(79)91123-9. [DOI] [PubMed] [Google Scholar]
  31. Rossi-Bernardi L., Perella M., Luzzana M., Samaja M., Raffaele I. Simultaneous determination of hemoglobin derivatives, oxygen content, oxygen capacity, and oxygen saturation in 10 microliters of whole blood. Clin Chem. 1977 Jul;23(7):1215–1225. [PubMed] [Google Scholar]
  32. Shung K. K., Lee M. Y., Reid J. M., Finch C. A. Effects of oxygen tension and pH on the ultrasonic absorption properties of sickle cells. Blood. 1979 Aug;54(2):451–458. [PubMed] [Google Scholar]
  33. Sunshine H. R., Hofrichter J., Eaton W. A. Gelation of sickle cell hemoglobin in mixtures with normal adult and fetal hemoglobins. J Mol Biol. 1979 Oct 9;133(4):435–467. doi: 10.1016/0022-2836(79)90402-9. [DOI] [PubMed] [Google Scholar]
  34. Sutherland J. W., Egan W., Schechter A. N., Torchia D. A. Carbon-13-proton nuclear magnetic double-resonance study of deoxyhemoglobin S gelation. Biochemistry. 1979 May 1;18(9):1797–1803. doi: 10.1021/bi00576a025. [DOI] [PubMed] [Google Scholar]
  35. Tyuma I., Imai K., Shimizu K. Analysis of oxygen equilibrium of hemoglobin and control mechanism of organic phosphates. Biochemistry. 1973 Apr 10;12(8):1491–1498. doi: 10.1021/bi00732a004. [DOI] [PubMed] [Google Scholar]
  36. Walder J. A., Zaugg R. H., Iwaoka R. S., Watkin W. G., Klotz I. M. Alternative aspirins as antisickling agents: acetyl-3,5-dibromosalicylic acid. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5499–5503. doi: 10.1073/pnas.74.12.5499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ward K. B., Wishner B. C., Lattman E. E., Love W. E. Structure of deoxyhemoglobin A crystals grown from polyethylene glycol solutions. J Mol Biol. 1975 Oct 15;98(1):161–177. doi: 10.1016/s0022-2836(75)80107-0. [DOI] [PubMed] [Google Scholar]
  38. Zarkowsky H. S., Hochmuth R. M. Sickling times of individual erythrocytes at zero Po2. J Clin Invest. 1975 Oct;56(4):1023–1034. doi: 10.1172/JCI108149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zipp A., Kuntz I. D., James T. L. Hemoglobin-water interactions in normal and sickle erythrocytes by proton magnetic resonance T1p measurements. Arch Biochem Biophys. 1977 Jan 30;178(2):435–441. doi: 10.1016/0003-9861(77)90213-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES