Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Oct;77(10):5606–5610. doi: 10.1073/pnas.77.10.5606

Geminate recombination of O2 and hemoglobin.

D A Chernoff, R M Hochstrasser, A W Steele
PMCID: PMC350115  PMID: 6932659

Abstract

The photolysis of HbO2 and HbCO has been studied by measuring transient absorption spectra in the Soret region after excitation with picosecond pulses at 530 nm. Dissociation occurred promptly in both cases, followed (for HbO2) by geminate recombination of ca. 40% of the photodissociated O2 with a lifetime of 200 +/- 70 psec (25 degrees C). No recombination of Hb + CO was observed up to 1200 psec after photolysis. The HbO2 and HbCO photoproduct spectra were broader, weaker, and red-shifted in comparison to the spectrum of stable Hb and Gibson's fast-reacting form, Hb. For HbO2 the spectrum was initially much broader to longer wavelengths but relaxed to a constant shape within 90 psec, whereas for HbCO there was no spectral evolution. The photophysics is analyzed by considering the effect of spin constraints as well as spin--orbit coupling and orbital correlation among the various electronic states of liganded and deoxy hemoglobins. The small quantum yield of HbO2 dissociation is not primarily due to rebinding but rather to electronic relaxation to nonreactive states.

Full text

PDF
5606

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberding N., Chan S. S., Eisenstein L., Frauenfelder H., Good D., Gunsalus I. C., Nordlund T. M., Perutz M. F., Reynolds A. H., Sorensen L. B. Binding of carbon monoxide to isolated hemoglobin chains. Biochemistry. 1978 Jan 10;17(1):43–51. doi: 10.1021/bi00594a007. [DOI] [PubMed] [Google Scholar]
  2. Alpert B., Banerjee R., Lindqvist L. The kinetics of conformational changes in hemoglobin, studied by laser photolysis. Proc Natl Acad Sci U S A. 1974 Feb;71(2):558–562. doi: 10.1073/pnas.71.2.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Austin R. H., Beeson K. W., Eisenstein L., Frauenfelder H., Gunsalus I. C. Dynamics of ligand binding to myoglobin. Biochemistry. 1975 Dec 2;14(24):5355–5373. doi: 10.1021/bi00695a021. [DOI] [PubMed] [Google Scholar]
  4. Dose E. V., Tweedle M. F., Wilson L. J., Sutin N. A direct measurement of dynamic spin-interconversion rates in the spin-equilibrium protein ferric myoglobin hydroxide. J Am Chem Soc. 1977 May 25;99(11):3886–3888. doi: 10.1021/ja00453a083. [DOI] [PubMed] [Google Scholar]
  5. Duddell D. A., Morris R. J., Richards J. T. Nanosecond laser photolysis of aqueous carbon monoxy- and oxyhaemoglobin. Biochim Biophys Acta. 1980 Jan 24;621(1):1–8. doi: 10.1016/0005-2795(80)90056-2. [DOI] [PubMed] [Google Scholar]
  6. Edelstein S. J., Rehmar M. J., Olson J. S., Gibson Q. H. Functional aspects of the subunit association-dissociation equilibria of hemoglobin. J Biol Chem. 1970 Sep 10;245(17):4372–4381. [PubMed] [Google Scholar]
  7. Eisert W. G., Degenkolb E. O., Noe L. J., Rentzepis P. M. Kinetics of carboxymyoglobin and oxymyoglobin studied by picosecond spectroscopy. Biophys J. 1979 Mar;25(3):455–464. doi: 10.1016/S0006-3495(79)85315-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Greene B. I., Hochstrasser R. M., Weisman R. B., Eaton W. A. Spectroscopic studies of oxy- and carbonmonoxyhemoglobin after pulsed optical excitation. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5255–5259. doi: 10.1073/pnas.75.11.5255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haldane J., Smith J. L. The Oxygen Tension of Arterial Blood. J Physiol. 1896 Dec 3;20(6):497–520. doi: 10.1113/jphysiol.1896.sp000634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hoffman B. M., Gibson Q. H. On the photosensitivity of liganded hemoproteins and their metal-substituted analogues. Proc Natl Acad Sci U S A. 1978 Jan;75(1):21–25. doi: 10.1073/pnas.75.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lyons K. B., Friedman J. M., Fleury P. A. Nanosecond transient Raman spectra of photolysed carboxyhaemoglobin. Nature. 1978 Oct 12;275(5680):565–566. doi: 10.1038/275565a0. [DOI] [PubMed] [Google Scholar]
  12. Noble R. W., Brunori M., Wyman J., Antonini E. Studies on the quantum yields of the photodissociation of carbon monoxide from hemoglobin and myoglobin. Biochemistry. 1967 Apr;6(4):1216–1222. doi: 10.1021/bi00856a035. [DOI] [PubMed] [Google Scholar]
  13. Noe L. J., Eisert W. G., Rentzepis P. M. Picosecond photodissociation and subsequent recombination processes in carbon monoxide hemoglobin. Proc Natl Acad Sci U S A. 1978 Feb;75(2):573–577. doi: 10.1073/pnas.75.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Olafson B. D., Goddard W. A., 3rd Molecular description of dioxygen bonding in hemoglobin. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1315–1319. doi: 10.1073/pnas.74.4.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Saffran W. A., Gibson Q. H. Photodissociation of ligands from heme and heme proteins. Effect of temperature and organic phosphate. J Biol Chem. 1977 Nov 25;252(22):7955–7958. [PubMed] [Google Scholar]
  16. Sawicki C. A., Gibson Q. H. Quaternary conformational changes in human hemoglobin studied by laser photolysis of carboxyhemoglobin. J Biol Chem. 1976 Mar 25;251(6):1533–1542. [PubMed] [Google Scholar]
  17. Shank C. V., Ippen E. P., Bersohn R. Time-resolved spectroscopy of hemoglobin and its complexes with subpicosecond optical pulses. Science. 1976 Jul 2;193(4247):50–51. doi: 10.1126/science.935853. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES