Abstract
The mechanism by which the cholesterol precursor, mevalonate, regulates S-phase DNA replication was examined in synchronized BHK cells. As previously demonstrated by this laboratory, blocking 3-hydroxy-3-methylglutaryl-CoA reductase [mevalonate:NADP+ oxidoreductase (CoA-acylating), EC 1.1.1.34] with the competitive inhibitor compactin suppresses DNA synthesis specifically during the S phase of the cell cycle. In the present study, known mevalonate derivatives were examined as possible mediators by which mevalonate controls DNA replication. Of the compounds studied, only isopentenyladenine and its 4'-hydroxylated analogue, zeatin, could substitute for mevalonate in restoring DNA replication in compactin-blocked cells. Moreover, these two derivatives proved to be at least 100 times more active than mevalonate, and both restored DNA relication to normal within 15 min of their being added to the medium. In addition, isopentenyladenine, like mevalonate, stimulated DNA synthesis specifically during the S phase of the cell cycle. Isopentenyladenine also reversed the inhibition of DNA synthesis caused by nalidixic acid, an antibiotic that does not inhibit cholesterol synthesis. These findings indicate that isopentenyladenine or a closely related derivative may mediate the regulatory role of mevalonate in DNA replication and suggest that such isoprenes may act upon DNA replication at a site common to that inhibited by nalidixic acid.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BOOTSMA D., BUDKE L., VOS O. STUDIES ON SYNCHRONOUS DIVISION OF TISSUE CULTURE CELLS INITIATED BY EXCESS THYMIDINE. Exp Cell Res. 1964 Jan;33:301–309. doi: 10.1016/s0014-4827(64)81035-1. [DOI] [PubMed] [Google Scholar]
- Bricker L. A., Morris H. P., Siperstein M. D. Loss of the cholesterol feedback system in the intact hepatoma-bearing rat. J Clin Invest. 1972 Feb;51(2):206–215. doi: 10.1172/JCI106805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown M. S., Faust J. R., Goldstein J. L., Kaneko I., Endo A. Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive inhibitor of the reductase. J Biol Chem. 1978 Feb 25;253(4):1121–1128. [PubMed] [Google Scholar]
- Brown M. S., Goldstein J. L. Suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and inhibition of growth of human fibroblasts by 7-ketocholesterol. J Biol Chem. 1974 Nov 25;249(22):7306–7314. [PubMed] [Google Scholar]
- Castora F. J., Simpson M. V. Search for a DNA gyrase in mammalian mitochondria. J Biol Chem. 1979 Nov 25;254(22):11193–11195. [PubMed] [Google Scholar]
- Chen H. W., Heiniger H. J., Kandutsch A. A. Relationship between sterol synthesis and DNA synthesis in phytohemagglutinin-stimulated mouse lymphocytes. Proc Natl Acad Sci U S A. 1975 May;72(5):1950–1954. doi: 10.1073/pnas.72.5.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen H. W., Kandutsch A. A., Heiniger H. J. The role of cholesterol in malignancy. Prog Exp Tumor Res. 1978;22:275–316. doi: 10.1159/000401203. [DOI] [PubMed] [Google Scholar]
- Gellert M., Mizuuchi K., O'Dea M. H., Itoh T., Tomizawa J. I. Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4772–4776. doi: 10.1073/pnas.74.11.4772. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gellert M., Mizuuchi K., O'Dea M. H., Nash H. A. DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3872–3876. doi: 10.1073/pnas.73.11.3872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gellert M., O'Dea M. H., Itoh T., Tomizawa J. Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4474–4478. doi: 10.1073/pnas.73.12.4474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grummt F. Diadenosine 5',5'''-P1,P4-tetraphosphate triggers initiation of in vitro DNA replication in baby hamster kidney cells. Proc Natl Acad Sci U S A. 1978 Jan;75(1):371–375. doi: 10.1073/pnas.75.1.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Habenicht A. J., Glomset J. A., Ross R. Relation of cholesterol and mevalonic acid to the cell cycle in smooth muscle and swiss 3T3 cells stimulated to divide by platelet-derived growth factor. J Biol Chem. 1980 Jun 10;255(11):5134–5140. [PubMed] [Google Scholar]
- Kandutsch A. A., Chen H. W. Consequences of blocked sterol synthesis in cultured cells. DNA synthesis and membrane composition. J Biol Chem. 1977 Jan 25;252(2):409–415. [PubMed] [Google Scholar]
- Kaneko I., Hazama-Shimada Y., Endo A. Inhibitory effects on lipid metabolism in cultured cells of ML-236B, a potent inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme-A reductase. Eur J Biochem. 1978 Jun 15;87(2):313–321. doi: 10.1111/j.1432-1033.1978.tb12380.x. [DOI] [PubMed] [Google Scholar]
- Klämbt D., Thies G., Skoog F. Isolation of cytokinins from Corynebacterium fascians. Proc Natl Acad Sci U S A. 1966 Jul;56(1):52–59. doi: 10.1073/pnas.56.1.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LANGDON R. G., BLOCH K. The effect of some dietary additions on the synthesis of cholesterol from acetate in vitro. J Biol Chem. 1953 May;202(1):77–81. [PubMed] [Google Scholar]
- LETHAM D. S. ZEATIN, A FACTOR INDUCING CELL DIVISION ISOLATED FROM ZEA MAYS. Life Sci. 1963 Aug;8:569–573. doi: 10.1016/0024-3205(63)90108-5. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Mizuuchi K., O'Dea M. H., Gellert M. DNA gyrase: subunit structure and ATPase activity of the purified enzyme. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5960–5963. doi: 10.1073/pnas.75.12.5960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterkofsky A. The incorporation of mevalonic acid into the N6-(delta 2-isopentenyl) adenosine of transfer ribonucleic acid in Lactobacillus acidophilus. Biochemistry. 1968 Jan;7(1):472–482. doi: 10.1021/bi00841a059. [DOI] [PubMed] [Google Scholar]
- Quesney-Huneeus V., Wiley M. H., Siperstein M. D. Essential role for mevalonate synthesis in DNA replication. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5056–5060. doi: 10.1073/pnas.76.10.5056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robins M. J., Hall R. H., Thedford R. N-6-(delta-3-isopentenyl) adenosine. A component of the transfer ribonucleic acid of yeast and of mammalian tissue, methods of isolation, and characterization. Biochemistry. 1967 Jun;6(6):1837–1848. doi: 10.1021/bi00858a035. [DOI] [PubMed] [Google Scholar]
- SIPERSTEIN M. D., FAGAN V. M. DELETION OF THE CHOLESTEROL-NEGATIVE FEEDBACK SYSTEM IN LIVER TUMORS. Cancer Res. 1964 Aug;24:1108–1115. [PubMed] [Google Scholar]
- Sabine J. R., Horton B. J., Hickman P. E. Control of cholesterol synthesis in hepatomas: absence of diurnal rhythm in hepatomas 7794A and 9618A. Eur J Cancer. 1972 Feb;8(1):29–32. doi: 10.1016/0014-2964(72)90080-1. [DOI] [PubMed] [Google Scholar]
- Siperstein M. D., Fagan V. M., Morris H. P. Further studies on the deletion of the cholesterol feedback system in hepatomas. Cancer Res. 1966 Jan;26(1):7–11. [PubMed] [Google Scholar]
- Siperstein M. D., Gyde A. M., Morris H. P. Loss of feedback control of hydroxymethylglutaryl coenzyme A reductase in hepatomas. Proc Natl Acad Sci U S A. 1971 Feb;68(2):315–317. doi: 10.1073/pnas.68.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
