Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Oct;77(10):5894–5898. doi: 10.1073/pnas.77.10.5894

Bacteriorhodopsin is an inside-out protein.

D M Engelman, G Zaccai
PMCID: PMC350178  PMID: 6934521

Abstract

Neutron scattering is particulary useful when parts of a structure can be deuterated. From Halobacterium halobium we have obtained, by biosynthetic incorporation, purple membranes in which all of the valines or all of the phenylalanines are present in deuterated form. Difference Fourier techniques permit a general assessment of the distribution of valine and phenylalanine in projections of the purple membrane structure. These show that valine is distributed toward the periphery of a single bacteriorhodopsin molecule, whereas phenylalanine is distributed toward its center. We use the facts that the amino acid sequence is known and that much of it can be assigned to the alpha helices of the bacteriorhodopsin structure to interpret our results. Comparison of our maps with the distribution of valine and phenylalanine around alpha-helical perimetrs establishes the distribution of other amino acids and leads to the conclusion that the charged and polar groups of the bacteriorhodopsin molecule tend to lie at the molecular interior, away from contact with lipid, while the nonpolar surfaces are directed outward, making contact with the lipid regions. Thus, the protein is "inside-out" compared with the organization of soluble proteins.

Full text

PDF
5894

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blaurock A. E., Stoeckenius W. Structure of the purple membrane. Nat New Biol. 1971 Sep 29;233(39):152–155. doi: 10.1038/newbio233152a0. [DOI] [PubMed] [Google Scholar]
  2. Engelman D. M., Henderson R., McLachlan A. D., Wallace B. A. Path of the polypeptide in bacteriorhodopsin. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2023–2027. doi: 10.1073/pnas.77.4.2023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gerber G. E., Anderegg R. J., Herlihy W. C., Gray C. P., Biemann K., Khorana H. G. Partial primary structure of bacteriorhodopsin: sequencing methods for membrane proteins. Proc Natl Acad Sci U S A. 1979 Jan;76(1):227–231. doi: 10.1073/pnas.76.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Henderson R., Unwin P. N. Three-dimensional model of purple membrane obtained by electron microscopy. Nature. 1975 Sep 4;257(5521):28–32. doi: 10.1038/257028a0. [DOI] [PubMed] [Google Scholar]
  5. McClare C. W. Bonding between proteins and lipids in the envelopes of Halobacterium halobium. Nature. 1967 Nov 25;216(5117):766–771. doi: 10.1038/216766a0. [DOI] [PubMed] [Google Scholar]
  6. Nagle J. F., Morowitz H. J. Molecular mechanisms for proton transport in membranes. Proc Natl Acad Sci U S A. 1978 Jan;75(1):298–302. doi: 10.1073/pnas.75.1.298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. ONISHI H., MCCANCE E., GIBBONS N. E. A SYNTHETIC MEDIUM FOR EXTREMELY HALOPHILIC BACTERIA. Can J Microbiol. 1965 Apr;11:365–373. doi: 10.1139/m65-044. [DOI] [PubMed] [Google Scholar]
  8. Oesterhelt D., Stoeckenius W. Functions of a new photoreceptor membrane. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2853–2857. doi: 10.1073/pnas.70.10.2853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Oesterhelt D., Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol. 1971 Sep 29;233(39):149–152. doi: 10.1038/newbio233149a0. [DOI] [PubMed] [Google Scholar]
  10. Ovchinnikov Y. A., Abdulaev N. G., Feigina M. Y., Kiselev A. V., Lobanov N. A. The structural basis of the functioning of bacteriorhodopsin: an overview. FEBS Lett. 1979 Apr 15;100(2):219–224. doi: 10.1016/0014-5793(79)80338-5. [DOI] [PubMed] [Google Scholar]
  11. SEHGAL S. N., GIBBONS N. E. Effect of some metal ions on the growth of Halobacterium cutirubrum. Can J Microbiol. 1960 Apr;6:165–169. doi: 10.1139/m60-018. [DOI] [PubMed] [Google Scholar]
  12. Stoeckenius W., Rowen R. A morphological study of Halobacterium halobium and its lysis in media of low salt concentration. J Cell Biol. 1967 Jul;34(1):365–393. doi: 10.1083/jcb.34.1.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Unwin P. N., Henderson R. Molecular structure determination by electron microscopy of unstained crystalline specimens. J Mol Biol. 1975 May 25;94(3):425–440. doi: 10.1016/0022-2836(75)90212-0. [DOI] [PubMed] [Google Scholar]
  14. Walker J. E., Carne A. F., Schmitt H. W. The topography of the purple membrane. Nature. 1979 Apr 12;278(5705):653–654. doi: 10.1038/278653a0. [DOI] [PubMed] [Google Scholar]
  15. Zaccai G., Gilmore D. J. Areas of hydration in the purple membrane of Halobacterium halobium: a neutron diffraction study. J Mol Biol. 1979 Aug 5;132(2):181–191. doi: 10.1016/0022-2836(79)90390-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES